
Remotely Configurable Data Acquisition and Remote Control Module

Summary

DARC-I is a standalone Data Acquisition and Remote Control (DARC) module. It is controlled by a remote device which sends it commands via a Bluetooth link.

Hardware Features

- FCC / CE / IC certified Class I Bluetooth V1.1 radio, 100m range, integral antenna.
- 12 analog inputs (10-bit).
- 5 PWM outputs (10-bit).
- 7 digital dedicated digital I/O pins.
- All analog and PWM pins may be also configured for digital I/O.
- Digital I/O pins can be configured as one 7-bit and/or up to two 5-bit parallel digital I/O.
- 64K flash, 2.3K RAM and 1K EEPROM memory available on-board.
- Up to 256K I2C external memory.
- Real time clock.
- Onboard power regulator, 3.3V 10V supply.

Firmware Features

DARC-I has a message-based command language allowing it to be configured via a Bluetooth link. The command set includes:

- PWM, digital and parallel output control.
- Analog, digital and parallel input control.
- Streaming of input data direct to remote device.
- Serial data I/O.
- Capture of frames of input data up to 5K samples / sec.
- Long-term data logging based on real time clock, even with remote device unconnected.
- Daylight savings time management.
- Bluetooth security and settings.

Customization

- Firmware C source code available.
- Customization possibilities include faster sampling rates and power saving modes.

Contents

SUMMARY	
CONTENTS	2
PIN DESCRIPTIONS	2
EVALUATING DARC-I	
COMMANDS	5
Reset Command	6
Configure DARC-I Command	6
Configure I/O Command	
Set I/O Command	13
Get I/O Command	14
Get Memory Command	14
Set Memory Command	15
Stream Data Command	16
Frame Data Command	18
Serial Data Command	18
Logging Data	18
RESPONSES	19
OK Response	19
Error Response	20
Date Time Response	20
I/O Value Response	
Got Memory Response	20
Serial Data Response	21
Initialization Response	
COMMAND / RESPONSE USER GUIDE	
CUSTOMIZATION	
MECHANICAL DATA	
TECHNICAL SPECIFICATIONS	
Electrical (does not apply to Toothpick Lite versions)	24
Radio	
FCC, CE modular approval	24
ORDERING CONTACT DETAILS	
TECHNICAL SUPPORT	24

Pin Descriptions

Pin Names	Description
AN0-AN11	Analog input or digital I/O (see note 2)
CCP1-CCP5	PWM output or digital I/O (see note 2)
SDA, SCL	External memory interface or digital I/O (see note 2)
SDO, TxD, RxD, INT0, INT1	Digital I/O (see note 2)
PCMC, PCMS, PCMI, PCMO	PCM Audio (not currently supported)
NMCLR	50ms pulse low to reset. May be left unconnected.
Vdd	Regulated power +3.3V to +5V (see note 1,2)
Vin	Unregulated power input +3.3V to +10V (see note 1)
Vss	Power ground reference
	Refer to technical specifications for current source / sink capabilities of I/O pins

- 1. Either (i) regulated power should be provided on Vdd and Vin left unconnected or (ii) unregulated power should be provided on Vin and Vdd may be used as a regulated power output.
- 2. If on-board power regulator used, total current draw on all outputs (including Vdd if used as a regulated power output) shall not exceed 200mA.

Evaluating DARC-I

DARC-I is based upon the Toothpick module from FlexiPanel Ltd. The Evaluation Version is intended for OEMs to use to evaluate the technology prior to customizing to their product lines.

The DARC-I is supplied as a Toothpick module which must be 'Field Programmed'. This takes a few seconds and requires either a Windows PC or a Pocket PC with Bluetooth. The procedure is as follows. If required use the default PIN code "0000".

₩ DARC-L

- 1. Download the Toothpick Development Kit from www.flexipanel.com and locate the DARC-I Service Pack Darc-I Win.exe (Windows) or Darc-I PPC.exe (Pocket PC).
- 2. Power-up the Toothpick with the on-board pushbutton held down. The on-board LEDs will flash simultaneously.
- 3. Start running the DARC-I Service Pack and connect from the computer to the Toothpick using Bluetooth.
- 4. Enter the COM port used to connect to the Toothpick in the box provided.

Step 1: Reset the module with the pushbutton held down. The LEDs should flash simultaneously.

Step 2. Make a Bluetooth connection from this computer to the module

Step 2: Press the Update... button. The LEDs will stop flashing

and enter the COM port used in the box on the right.

alternately when programming is complete.

5. Press the Update button. Programming takes about 30 seconds. When the progress bar is full, field programming is complete.

DARC-I is intended to respond to binary commands, but it can also accept the same commands if typed in ASCII hexadecimal. To send typed ASCII hexadecimal commands to DARC-I, you will need to connect it to a terminal emulator. The instructions which follow assume you will use the HyperTerminal program which comes bundled free with the Windows operating system. You will need a Windows PC with Bluetooth. You must also complete all steps each time, since some steps rely on preceding steps being complete.

- 6. When the module powers up, the two LEDs flash once to show that the module has initialized correctly. It then enters a discoverable and connectable state. From your Windows PC, search for the DARC-1 module and connect to it. Note which COM port Bluetooth uses to make the connection. Then start HyperTerminal and select the following settings:
 - Connect using COM port as appropriate.
 - Specify 9600 baud, 8 data bits, no parity, 1 stop bit, hardware flow control.
- 7. As soon as HyperTerminal connects, the following message should appear:

11444152432D4920342E302E3000000000

This is the hex codes for the number 17 followed by the 17 text characters DARC-I 3.0.00004. (The version number may differ.) Go to File > Properties > Settings > ASCII Setup in the menu and set the following:

- Check Send line ends with line feeds.
- Check Echo characters typed locally.

Page 3

8. Type the following command. If you make a mistake, simply tap 'z' until you get a 0302F1 ('not understood') error message and then start again.

04033101

You should get the response 0201, meaning command completed OK. You sent the command to turn on the red LED and it should have come on. The first byte of the command, 04, indicates that the whole command is 4 bytes long. The 03 indicates that the command is to set an I/O output value. The 32 indicates the I/O value is the red LED and finally 01 indicates you want to turn it on. You can set all outputs this way.

9. To configure I/O as outputs or inputs, the 02 command is used. Type the following to set AN0 and AN1 as analog inputs:

04020102

10. To read an input, the 04 command is used. Type the following to read the AN0 analog input:

030410

You should get the response 050410xxyy, meaning ANO was measured to be xxyy, where xx is the low byte and yy high byte. The exact value will depend on the stray voltages present on the pins.

Three types of repetitive data recording are available:

Streaming allows data to be sent at regular intervals direct to the host. The speed is limited to the Bluetooth communications rate (approx 5K – 10K bytes / sec). Streaming continues until the host tells DARC-I to stop.

Framing allows a fixed amount of data to be recorded in memory at regular intervals. The speed is only limited by the speed at which the inputs can be sampled. The host can upload the data after all the data has been collected. This allows DARC-I to capture snapshots of high-speed data, for example for spectral analysis.

Logging allows data to be recorded in memory at regular intervals as dictated by the real time clock. The difference between framing and logging is that you must wait for the framing command to complete before doing anything else. In logging, you can send other commands while logging is taking place. You can even disconnect and reconnect later. The host can upload the data when it reconnects.

11. To request logged data, send the following commands:

0501231001	(asks for AN0 to be recorded; expect a 0201 response)
0501231101	(asks for AN1 to be recorded; expect a 0201 response)
0501240202	(asks to store samples in RAM)
04012201	(log samples once per second)

Data are being logged once per second. The samples are stored in RAM, as specified. If the RAM fills up, logging will start from the beginning of RAM again, overwriting the oldest data. To stop logging, use the command:

04012200 (log samples once per second)

The data are stored as an 8-byte date-time field followed by the sampled data, which in this case is two two-byte analog samples. To retrieve samples, use Get Memory commands. For example, type:

Page 4 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

The response I received while writing this guide was:

110502000003020B010601D00700001402

The 03020B meant the time was 12:02:03. The 010601D007 meant the clock date was Saturday (0x06), 1st January, 2000 (0x07D0). The samples were 0x0000 (AN0) and 0x00214 (AN1).

12. To request framed data, send the following commands. (You must have done step 11 first to select AN0 and AN1 for recording, and note that this command turns off the real time clock so you cannot log data again without resetting.)

0501210100 (sample rate 5000 samples per second)

04080002 (store a frame of 512 values)

After the final command, 512 samples are logged to memory at a rate of 5000 samples per second and then the '0201' acknowledge command is transmitted. The Get Memory command is used to retrieve the data, the same as for logging, although there is no date-time field now, *e.g.*

060502000010 (get first 16 bytes, e.g. first 4 samples)

13. To request streamed data, send the following commands:

0501217D00 (sample rate 40 samples per second)

0207 (starts data streaming)

You will get forty lots of four hexadecimal bytes message xxyyaabb every second. ANO was measured to be xxyy. AN1 was measured to be aabb. Send any character to end the data streaming.

Commands

Commands can be in either ASCII or binary and the two formats can be mixed freely. In ASCII format, each byte is transmitted as a two hexadecimal digits (upper or lower case) and the entire command must be followed by a <CR><LF> pair (i.e. the control characters 0x0D and 0x0A). DARC-I can differentiate between ASCII and binary commands by looking at the first character. If it is less than the ASCII character '0' (zero), the command is binary. If it is an ASCII character for a hexadecimal digit, the command is ASCII. Any other character is an illegal command.

Commands may be up to 47 bytes long. The first byte is the *command length byte*, equal to the total number of bytes in the message. The second byte is the *command byte*, which indicates how the remainder of the message should be interpreted.

Only one command can be processed at once. To know when the previous command has completed, observe the state of the RTS pin or wait for a response to be sent. Only then send another command.

Command Summary					
Command	Command	Command Effect			
	Byte				
Reset	0x00	Disconnects and resets			
Configure DARC-I	0x01	Configures DARC-I			
Configure I/O	0x02	Configures I/O			
Set I/O	0x03	Sets an I/O value			

Command Summary		
Command	Command	Effect
	Byte	
Get I/O	0x04	Requests an I/O value
Read Memory	0x05	Reads from memory locations
Write Memory	0x06	Writes to memory locations
Stream Data	0x07	Streams data samples to remote device
Get Data Frame	0x08	Stores a sequence of data samples in memory
Send Serial Data	0x09	Transmits serial data on the TxD pin
Log Data	n/a	

Reset Command

The command byte 0x00 instructs the Toothpick to disconnect and reset.

Reset Command Examples			
Reset (binary)	0x02 0x00		
Reset (ASCII)	"0200 <cr><lf>"</lf></cr>		

Configure DARC-I Command

The command byte 0×01 configures the general properties of the DARC-I. The byte after the command byte is the *Property Byte*, which specifies the exact property being set. The remaining bytes represent the new property value, as follows:

Configure	Configure DARC-I Command Properties				
Property Byte	Property	Remaining Byte(s)			
0x01	Security level*	00 = None (default)			
		01 = Authentication			
		02 = Authentication and encryption			
0x02	Authentication PIN*	Zero terminated ASCII pin code (maximum 16 characters plus zero terminator)			
0x03	Device name*	Zero terminated ASCII device name			
		(maximum 16 characters plus zero			
		terminator)			
0x04	Initialization response*	00 = No an initialization response			
		FF = Generate an initialization response			
		(default)			
0x05	ASCII responses*	00 = Generates binary responses			
		FF = Generates ASCII responses (default)			
0x06	On internal error*	01 = Flash error number, reset on button			
		press			
		02 = Reset immediately			
		03 = Send error response to host (default)			
0x07	I2C memory setup*	00 = No I2C memory (default)			
		01 = I2C memory with 100kHz clock speed			
		02 = I2C memory with 400kHz clock speed			
0x08	Device class*	3-byte device class value as defined below,			
		expressed as a zero terminated 6-character			
		hex string			

Page 6 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Configure	Configure DARC-I Command Properties				
Property	Property	Remaining Byte(s)			
Byte					
0×09	Serial port setup	Configures the serial port			
		00 = Not used (default)			
		01 = 2400 baud			
		02 = 4800 baud			
		03 = 9600 baud			
		04 = 19200 baud			
		05 = 38400 baud			
		06 = 57600 baud			
		TxD = Serial data output			
		RxD = Serial data input			
		INTO = Flow control output			
001	Cat atra are /france note	INT1 = Flow control input			
0x21	Set stream / frame rate	2-byte SampleRate (low byte first).			
0x22	Cot los rata	Sets the sample rate to multiples of 200µS.			
	Set log rate	1-byte LogRate value as defined below			
0x23	Set stream / frame / log	1st byte: Input ID value as described in			
	inputs	Stream Data Command			
		2nd byte: 00 = Don't sample			
0x24	Cot from a / log momon/	01 = Sample			
0X24	Set frame / log memory locations	2-bytes FLMemStart, FLMemEnd as			
0x41	1000.000	defined below			
0x41 0x42	Daylight Savings	1-byte <i>DSTEvent</i> value as defined below			
	Date / Time	8-byte value as defined below			
0x43	Request Date / Time	No additional bytes. Generates a Date Time response immediately.			

Items marked * are stored permanently in Flash memory. With the exception of the PIN code, these changes will not take effect until after the device next resets. If required, the default values can be restored by reloading the DARC-I Firmware Solution using Wireless Field Programming as described in steps 1-5.

LogRate determines when data is logged to memory:

LogRate	Definition
0x00	No logging. (Streaming / framing permitted.)
0x01	Every second
0x02	Every 2 seconds
0x03	Every 5 seconds
0x04	Every 10 seconds
0x05	Every 15 seconds
0x06	Every 30 seconds
0x07	Every 60 seconds
0x08	Every 2 minutes
0x09	Every 5 minutes
0x0A	Every 10 minutes
0x0B	Every 15 minutes
0x0C	Every 30 minutes
0x0D	Every 60 minutes
0x0E	Every 2 hours
0x0F	Every 3 hours
0x10	Every 6 hours
0x400x57	Daily at midnight / 1 am / 2 am / / 11 pm

The Set stream / frame / log inputs property includes or excludes an input from the set of data to be recorded. It must also be configured as an appropriate input.

FLMemStart, FLMemEnd determine where data is stored. Each of FLMemStart and FLMemEnd are mStr memory types as defined for the Set Memory command. It will start at the first allowable location in FLMemStart and work along linearly until no more records will fit. It will then move to the next memory type and record the whole of the next record at the beginning of that; when memory FLMemEnd is full, it will restart at FLMemStart.

For example, if both FLMemStart and FLMemEnd are 0×01 (RAM), it will fill the RAM memory from 0×000 to 0x7FF and then start from 0x000 again. If FLMemStart is 0x14 (External memory 0xB8) and FLMemEnd is 0x81 (ROM), it will fill external memory 0xB8, then external memory 0xBA then external memory 0xBC, then external memory 0xBE, then the Flash ROM, and then start back with external memory 0xB8. All external memory will be assumed to contain valid addresses 0x0000 to 0x7FFF, i.e. 24C256 and 24C512 compatible devices.

DSTEvent defines the next moment in time at which the Real Time Clock will adjust itself. When it does so, it also swaps the Daylight Savings Time value for its seasonal converse. We have put considerable effort into compiling this data and we disclose for customer reference only. It remains our copyright and its reproduction or use without our prior consent is not permitted.

DSTEvent Value (decimal)	Definition	Month	Date	Day of week	Hour	Action taken
0	No DST (default)	n/a	n/a	n/a	n/a	none
1	Australian winter	10	25	Sunday	0	Hour advanced 1
33	Australian summer	3	25	Sunday	1	Hour retarded by 1
2	Bahamas winter	4	1	Sunday	0	Hour advanced 1
34	Bahamas summer	10	25	Sunday	1	Hour retarded by 1
3	Brazil winter	11	1	Sunday	0	Hour advanced 1
35	Brazil summer	2	15	Sunday	1	Hour retarded by 1
4	Canada winter	4	1	Sunday	0	Hour advanced 1
36	Canada summer	10	25	Sunday	1	Hour retarded by 1
5	Chile winter	10	8	Saturday	0	Hour advanced 1
37	Chile summer	3	8	Saturday	1	Hour retarded by 1
6	Cuba winter	4	1	Any	0	Hour advanced 1
38	Cuba summer	10	25	Sunday	1	Hour retarded by 1
7	Eastern Europe winter	3	25	Sunday	0	Hour advanced 1
39	Eastern Europe summer	10	25	Sunday	1	Hour retarded by 1
8	Egypt winter	4	24	Friday	0	Hour advanced 1
40	Egypt summer	9	24	Thursday	1	Hour retarded by 1
9	Falklands winter	9	8	Sunday	0	Hour advanced 1
41	Falklands summer	4	6	Sunday	1	Hour retarded by 1
10	Greenland winter	3	25	Sunday	1	Hour advanced 1
42	Greenland summer	10	25	Sunday	2	Hour retarded by 1
11	Iran winter	1	1	Any	0	Hour advanced 1
43	Iran summer	7	1	Any	1	Hour retarded by 1
12	Iraq winter	4	1	Any	0	Hour advanced 1
44	Iraq summer	10	1	Any	1	Hour retarded by 1
13	Israel winter	4	1	Friday	0	Hour advanced 1
45	Israel summer	9	1	Friday	1	Hour retarded by 1
14	Kirgistan winter	3	25	Sunday	0	Hour advanced 1
46	Kirgistan summer	10	25	Sunday	1	Hour retarded by 1
15	Lebanon winter	3	25	Sunday	0	Hour advanced 1
47	Lebanon summer	10	25	Sunday	1	Hour retarded by 1
16	Mexico winter	4	1	Sunday	0	Hour advanced 1
48	Mexico summer	10	25	Sunday	1	Hour retarded by 1

Page 8 29-Jan-07

DSTEvent	Definition	Month	Date	Day of	Hour	Action taken
Value				week		
(decimal)						
17	Namibia winter	9	1	Sunday	0	Hour advanced 1
49	Namibia summer	4	1	Sunday	1	Hour retarded by 1
18	New Zealand winter	10	1	Sunday	0	Hour advanced 1
50	New Zealand summer	3	15	Sunday	1	Hour retarded by 1
19	Palestine winter	4	15	Friday	0	Hour advanced 1
51	Palestine summer	10	15	Friday	1	Hour retarded by 1
20	Paraguay winter	9	1	Sunday	0	Hour advanced 1
52	Paraguay summer	4	1	Sunday	1	Hour retarded by 1
21	Russia winter	3	25	Sunday	2	Hour advanced 2
53	Russia summer	10	25	Sunday	4	Hour retarded by 2
22	Syria winter	4	1	Any	0	Hour advanced 1
54	Syria summer	10	1	Any	1	Hour retarded by 1
23	Tasmania winter	10	1	Sunday	0	Hour advanced 1
55	Tasmania summer	3	1	Sunday	1	Hour retarded by 1
24	Tonga winter	11	1	Sunday	0	Hour advanced 1
56	Tonga summer	1	25	Sunday	1	Hour retarded by 1
25	USA winter	4	1	Sunday	0	Hour advanced 1
57	USA summer	10	25	Sunday	1	Hour retarded by 1
26	Western Europe winter	3	25	Sunday	1	Hour advanced 1
58	Western Europe summer	10	25	Sunday	2	Hour retarded by 1

The 3-byte Bluetooth device class determines what the module claims to be when other Bluetooth devices ask it. It affects the icon that appears on other Bluetooth devices and may affect the device discovery function. In particular some mobile phones only look for certain sub classes, *e.g.* headsets.

The device class consists of three elements: the services available, the major device class and the minor device class. LinkMatik can be programmed to claim to be capable of any number of services, however exactly one Major Class must be specified. The minor device class is an optional addition, defining a subset of the major device class.

The first two bytes of the device class contain the services information and the major device class. They are calculated by bitwise-ORing together as many services that are required and the one Device Major Class required.

Note that when setting the device class, the data is expressed as a 6-character zero terminated hexadecimal string.

Page 9 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Byte A	Byte B	Description	Data Type
0x00	0x20	Limited discovery mode (default)	
0x01	0x00	Positioning	
0x02	0x00	Network (default)	
0x04	0x00	Rendering	
0x08	0x00	Capturing	Services
0x10	0x00	Object transfer (default)	
0x20	0x00	Audio	
0x40	0x00	Telephony (default)	
0x80	0x00	Information	
0x00	0x01	Computer	
0x00	0x02	Phone (default)	
0x00	0x03	LAN	
0x00	0x04	AV	Device Major
0x00	0x05	Peripheral	Class
0x00	0x06	Imaging	
0x00	0x1F	Uncategorized	
0x00	0x00	Miscellaneous Device Class	

The last byte defines the minor device class. Its interpretation depends on the major device class specified as follows.

Byte C	Computer	Phone Major	LAN Major	AV Major
	Major Class	Class	Class	Class
0x00	Other	Other	LAN 0% utilized	Other
0x04	Desktop	Cellphone		Wearable headset
		(default)		
0x08	Server	Cordless phone		Hands free device
0x0C	Laptop	Smartphone		
0x10	Handheld	Gateway / modem		Microphone
0x14	Palm-sized	ISDN		Loudspeaker
0x18	Wearable			Headphones
0x1C				Walkman
0x20			LAN 1-17% utilized	Car audio
0x24				Set top box
0x28				Hi-Fi
0x2C				VCR
0x30				Video camera
0x34				Camcorder
0x38				Monitor
0x3C				Monitor with audio
0x40			LAN 17-33% utilized	Conferencing device
0x48				Toy
0x60			LAN 33-50% utilized	
0x80			LAN 50-67% utilized	
0xA0			LAN 67-83% utilized	
0xC0			LAN 83-99% utilized	
0xE0			LAN 100% utilized	

Byte C	Peripheral Device Class Bitwise-OR together one † value and one ‡ value	Imaging Device Class Bitwise-OR together as many values as apply	Uncategorized / Miscellaneous Device Class
0x00	No keyboard or pointing device †		Uncategorized / Miscellaneous
0x00	Other ‡		

0x04	Joystick		
80x0	Gamepad ‡		
0x0C	Remote control ‡		
0x10	Sensing device ‡	Display	
0x14	Digitizer ‡		
0x18	Card reader‡		
0x1C			
0x20		Camera	
0x40	Keyboard but no pointing device †	Scanner	
0x80	Pointing device but no keyboard †	Printer	
0xC0	Keyboard and pointing device †		

The DateTimeU structure is defined as follows:

Field name	Datatype	Contains	Range
sec	byte	Second	0 – 59
min	byte	Minute	0 – 59
hour	byte	Hour	0 – 23
date	byte	Date	1 – 31
dow	byte	Day of	0 – 6 Sunday to Saturday respectively
		week	7 = Unknown
month	byte	Month	1 – 12
year	uint16	Year	0 – 65535

Examples of Configure DARC-I Commands:

Configure DARC-I Command Examp	les
Set authentication security (binary)	0x04 0x01 0x01 0x01
Set authentication security (ASCII)	"04010101 <cr><lf>"</lf></cr>
Set PIN "1234" (ASCII)	"0801023132333400 <cr><lf>"</lf></cr>
Set device name "Fred" (ASCII)	"0801034672656400 <cr><lf>"</lf></cr>
Set binary responses (ASCII)	"04010500 <cr><lf>"</lf></cr>
Set device class 9FE204 (ASCII)	"0A010839666532303400 <cr><lf>"</lf></cr>
Set time to 13:24:50, April 1st, 2005	"0B014232180D010004D507 <cr><lf>"</lf></cr>
(ASCII)	
Get time (ASCII)	"030143 <cr><lf>"</lf></cr>
Set stream rate to 51.2µs	0x05 0x01 0x21 0x78 0xFE
Set stream rate to 1/1024th sec	0x05 0x01 0x21 0x1F 0x00
Set stream rate to 1 sec	0x05 0x01 0x21 0xFF 0x7F
Set log rate to daily at midday	0x04 0x01 0x22 0x4C
Add AN0 to the list of the data to be	0x05 0x01 0x23 0x10 0x01
sampled	
Remove AN0 from the list of the data	0x05 0x01 0x23 0x10 0x00
to be sampled	
Log to ROM only	0x05 0x01 0x24 0x81 0x81
Log to external memory 0xB0, 0xB2	0x05 0x01 0x24 0x10 0x11
Set up serial port, 9600 baud	0x04 0x01 0x09 0x03

Configure I/O Command

The command byte 0×0.2 configures the Toothpick I/O. The byte after the command byte is the *Property Byte*, which specifies the exact I/O property being set. The remaining bytes represent the new property value, as follows:

Configure	I/O Command Properties	
Property Byte	Property	Remaining Byte(s)
0x01	A to D channels	Range 00 to 0C = Number of analog to digital channels (from AN0 up).
0x02	Negative voltage reference	00 = Vss is –ve voltage reference (default) 01 = AN2 is –ve voltage reference
0x03	Positive voltage reference	00 = Vdd is +ve voltage reference (default) 01 = AN3 is +ve voltage reference
0x04	PWM time base units	00 = Turn PWM off 01 = PWM on, base time unit is 0.2μs 02 = PWM on, base time unit is 0.8μs 03 = PWM on, base time unit is 3.2μs
0x05	PWM period	Range 00 to FF = PWM period in PWM base time, less one.
0x06	Parallel I/O A function	00 = Not used 02 = 2-bit output (AN11 - AN10) 03 = 3-bit output (AN11 - AN9) 04 = 4-bit output (AN11 - AN8) 05 = 5-bit output (AN11 - AN7) 06 = 6-bit output (AN11 - AN6) 07 = 7-bit output (AN11 - AN5) 12 = 2-bit input (AN11 - AN10) 13 = 3-bit input (AN11 - AN9) 14 = 4-bit input (AN11 - AN8) 15 = 5-bit input (AN11 - AN7) 16 = 6-bit input (AN11 - AN6) 17 = 7-bit input (AN11 - AN5)
0x07	Parallel I/O B function	00 = Not used 02 = 2-bit output (AN4 – AN3) 03 = 3-bit output (AN4 – AN2) 04 = 4-bit output (AN4 – AN1) 05 = 5-bit output (AN4 – AN0) 12 = 2-bit input (AN4 – AN3) 13 = 3-bit input (AN4 – AN2) 14 = 4-bit input (AN4 – AN1) 15 = 5-bit input (AN4 – AN0)
0x08	Parallel I/O C function	00 = Not used 02 = 2-bit output (CCP5, CCP4) 03 = 3-bit output (CCP5, CCP4, RxD) 04 = 4-bit output (CCP5, CCP4, RxD, TxD) 05 = 5-bit output (CCP5, CCP4, RxD, TxD, CCP3) 12 = 2-bit input (CCP5, CCP4) 13 = 3-bit input (CCP5, CCP4, RxD) 14 = 4-bit input (CCP5, CCP4, RxD, TxD) 15 = 5-bit input (CCP5, CCP4, RxD, TxD, CCP3)
0x10 - 0x1B	AN0 – AN11 function $(0 \times 10 = AN0, 0 \times 11 = AN1, etc)$	00 = Digital input (default) 01 = Digital output (Ignored if configured for A to D input.)
0x1C - 0x20	CCP1 – CCP5 function	00 = Digital input (default) 01 = Digital output 02 = PWM output

Page 12 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Configure	Configure I/O Command Properties				
Property	Property	Remaining Byte(s)			
Byte					
0x21 -	INT0 – INT1 function	00 = Digital input (default)			
0x22		01 = Digital output			
0x23	SCL function	As INT0			
0x24	SDA function	As INT0			
0x25	SDO function	As INT0			
0x26	TxD function	As INT0			
0x27	RxD function	As INT0			

Notes:

I/O pin functions: Pin specifications are ignored for AN inputs if the *A to D channels* property dictates that they should be A to D inputs. I/O pin functions must not be sent for pins used for parallel I/O, external memory, serial data and flow control purposes.

Parallel I/O: Pins are modified or read at exactly the same instant.

PWM base time units: Base time units for PWM values. PWM period is in PWM base time units (1 to 256). PWM duty cycle is in quarter PWM base time units (0 to 1023). *PWM time base units* turns PWM outputs on or off, so during initialization, set up period and initial output values first.

Configure I/O Command Examples	
Set AN0 – AN4 as A to D pins (binary)	0x04 0x02 0x01 0x05
Set AN0 – AN4 as A to D pins (ASCII)	"04020105 <cr><lf>"</lf></cr>
Set: PWM time base 3.2µs	0x04 0x02 0x04 0x03
PWM period as 256 (=1220Hz)	0x04 0x02 0x05 0xFF
CCP2 pin as PWM (binary)	0x04 0x02 0x1D 0x02

Serial port & I/O: If the serial port I enabled, the functions of INT0, INT1, TxD and RxD should not be set.

Set I/O Command

The command byte 0×03 sets a Toothpick I/O output value. The byte after the command byte is the *Property Byte*, which specifies the exact I/O value being set. The remaining bytes represent the new I/O value, as follows:

Set I/O Command Properties				
Property Byte	Property	Remaining Byte(s)		
0x06	Parallel I/O A output	Range 00 to 7F = new value		
0x07	Parallel I/O B output	Range 00 to 1F = new value		
0x08	Parallel I/O C output	Range 00 to 1F = new value		
0x10 - 0x1B	AN0 – AN11 output	00 = low		
		01 = high		
0x1C - 0x20	CCP1 – CCP5 output	If digital, as AN0 – AN11.		
		If PWM, range 0000 to 03FF. (Both		
		byes must be specified.)		
0x21 - 0x22	INT0 – INT1 output	As AN0		
0x23	SCL output	As AN0		
0x24	SDA output	As AN0		
0x25	SDO output	As AN0		
0x26	TxD output	As AN0		
0x27	RxD output	As AN0		

Set I/O Command Properties			
Property Byte	Property	Remaining Byte(s)	
0x30	Green LED	00 = off	
		01 = on	
0x31	Red LED	00 = off	
		01 = on	

If the pin is not already configured as an output, the value will be ignored. I/O pin value commands must not be sent for pins used for external memory, serial data and flow control purposes.

Set I/O Command Examples		
Set AN10 as high (binary)	0x04 0x03 0x1A 0x01	
Set AN10 as high (ASCII)	"04031A01 <cr><lf>"</lf></cr>	
Set CCP2 as 33% duty cycle (binary)	0x04 0x03 0x1D 0x01 0x55	

Get I/O Command

The command byte 0×04 requests a Toothpick I/O value. The byte after the command byte is the *Property Byte*, which specifies the exact I/O value being requested. The value will be read and transmitted as an I/O value response.

Get I/O Command Properties		
Property Byte	Property	
0x06	Parallel I/O A input	
0x07	Parallel I/O B input	
0x08	Parallel I/O C input	
0x10 - 0x1B	AN0 – AN11 input	
0x1C - 0x20	CCP1 – CCP5 input	
0x21 - 0x22	INT0 – INT1 input	
0x23	SCL input	
0x24	SDA input	
0x25	SDO input	
0x26	TxD input	
0x27	RxD input	
0x30	Green LED	
0x31	Red LED	
0x32	Pushbutton	

If the pin is configured as digital output, the result will be the current output value. If the pin is configured as CCP output, the result will be unpredictable. I/O pin value commands must not be sent for pins used for external memory and flow control purposes.

Get I/O Command Examples	
Get AN10 (binary)	0x03 0x04 0x1A
Get AN10 (ASCII)	"03041A <cr><lf>"</lf></cr>
Get CCP2 (binary)	0x03 0x04 0x1D

Get Memory Command

The Get Memory Data Command byte 0×05 retrieves data from internal or external memory. Very little error checking is done with this command, so it should be used with care.

The byte after the command byte is the mStr memory storage type as defined in the Set Memory Command. The next two bytes are the Addr memory address (little-endian, i.e. least significant byte first) as defined in the Set Memory Command.

The final byte is the number of bytes required, up to 120 bytes in ASCII response mode and 248 bytes in binary response mode.

Each Get Memory Command will receive exactly one Got Memory Response.

Get Control Data Command Example						
Get 4 bytes of EE memory from 0x0123	0x06	0×05	0x03	0x23	0×01	0x04

Set Memory Command

The Set Memory Data Command byte 0x06 sets data in internal or external memory. Very little error checking is done with this command, so it should be used with care. It is your responsibility to ensure that you do not overwrite important memory regions. Overwriting ROM00 locations below 0xC000 may prevent Wireless Field Programming from functioning.

The byte after the command byte is the mStr memory storage type as defined below. The next two bytes are the Addr memory address (little-endian, i.e. least significant byte first) as defined below.

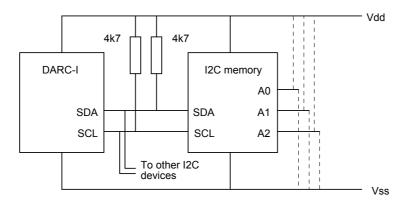
The remaining bytes are the data to be written to memory mStr starting at location Addr. Up to 120 bytes may be set with an ASCII Set Memory command and 248 bytes may be set with a binary Set Memory command.

Set Memory Command Example							
Set EE memory from 0x0123 with the	0x09	0x06	0x03	0x23	0x01	0×05	0x06
values 0x05 0x06 0x07 0x08.	0x07	80x0					

The following regions of memory are not used and you may use them as you wish:

Type	mStr value	Addr min	Addr max
RAM	0x02	0x0000	0x07FF
EE	0x03	0x0000	0x3FF
External memory I2C	0x10	0x0000	IC limit
address 0xB0 / 0xB1			
External memory I2C	0x11	0x0000	IC limit
address 0xB2 / 0xB3			
External memory I2C	0x12	0x0000	IC limit
address 0xB4 / 0xB5			
External memory I2C	0x13	0x0000	IC limit
address 0xB6 / 0xB7			
External memory I2C	0x14	0x0000	IC limit
address 0xB8 / 0xB9			
External memory I2C	0x15	0x0000	IC limit
address 0xBA / 0xBB			
External memory I2C	0x16	0x0000	IC limit
address 0xBC / 0xBD			
External memory I2C	0x17	0x0000	IC limit
address 0xBE / 0xBF			
ROM (Flash)	0x81	0x0000	0xEFFF

29-Jan-07


Notes:

RAM memory may be written to an unlimited number of times. Its contents are lost when power is turned off.

ROM memory may be written to approximately 100,000 times. Its contents are retained when power is turned off. Writing to ROM causes the main microcontroller clock (but not the real time clock) to be suspended for about 2ms.

EE memory may be written to approximately 1,000,000 times. Its contents are retained when power is turned

External memory must be installed in order to use it. External memory access has been tested with Microchip Technology 24Cxxx series EEPROM devices and external I2C memory devices should use the same I2C communications format. Setting up external I2C memory is as follows, with reference to the figure:

- 1. Connect the Vdd, Vss , SDA and SCL lines for all memory devices.
- 2. Provide 4K7 pull-up resistors for SDA and SCL.
- 3. Hardwire each I2C memory device address line A0-A2 to Vcc or Vss to specify separate storage addresses as in the following table. (24C512-compatable devices should be connected to 0x1y where y is even; the upper half of the memory is accessed as 0x1y+1.)

Storage address	A2	A1	A0
0x10	Vss	Vss	Vss
0x11	Vss	Vss	Vdd
0x12	Vss	Vdd	Vss
0x13	Vss	Vdd	Vdd
0x14	Vdd	Vss	Vss
0x15	Vdd	Vss	Vdd
0x16	Vdd	Vdd	Vss
0x17	Vdd	Vdd	Vdd

- 4. Send an I2C memory setup to initialize the I2C memory management.
- 5. Call Get Memory and Set Memory as required.

Stream Data Command

The Stream Data Command byte 0x07 samples inputs and sends the results immediately to the remote device. There are no bytes after the command byte. The next two bytes are the Addr memory address (littleendian, i.e. least significant byte first) as defined below.

The sampling rate, between 1/32768 second and 2 seconds, is defined by the Stream / Frame Rate property set using the Configure DARC-I command.

Page 16 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending The Stream / Frame / Log Inputs property, set using the Configure DARC-I command, specifies what is recorded. This also defines the size of each record and the maximum speed at which data can be recorded. Each record will contain a byte for each digital/parallel value recorded and two bytes (lowest byte first) for each analog value recorded. The order will be as follows (only those inputs specified by the Stream / Frame / Log Inputs property will be recorded):

Input ID value	Property
0x06	Parallel I/O A input
0x07	Parallel I/O B input
0x08	Parallel I/O C input
0x10 - 0x1B	AN0 – AN11 input
0x1C - 0x20	CCP1 – CCP5 input
0x21 - 0x22	INT0 – INT1 input
0x23	SCL input
0x24	SDA input
0x25	SDO input
0x26	TxD input
0x27	RxD input

Digital and parallel inputs are sampled more or less instantly. Analog values require about 20µs each. Values are sampled sequentially, not simultaneously.

The sample records are transmitted immediately to the remote device. Samples will continue to be transmitted until any character is transmitted from the remote device. That character will then be discarded, so it should not be the first byte of a command. The DARC-I will then respond with an '0201' OK response.

If, during streaming, the data cannot be transmitted fast enough, no further data will be transmitted. The DARC-I will then wait for any character to be transmitted from the remote device and reply with a '0302F4' overflow error.

Data streaming cannot take place while data logging is in operation and if a Frame Data Command is sent when **LogRate** is non-zero, an '0302F1' error will be generated.

Notes:

- Streaming in not possible while the Real Time Clock is operating. The Real Time Clock is turned off when the Stream Data command is received and it is not turned on again.
- For reasons of speed, the output stream is not buffered and it is assumed that the remote device can absorb the data as fast as it is transmitted.

Stream Data Example	
Set AN0 and AN1 as analog	0x04 0x02 0x01 0x02
Record AN0	0x05 0x01 0x23 0x10 0x01
Record AN1	0x05 0x01 0x23 0x11 0x01
Set 1s sample rate	0x05 0x01 0x21 0x88 0x13
Start streaming	0x02 0x07
Stream data response	0x42 0x01 0x36 0x02
↓	↓
Stream data response	0xA2 0x00 0x25 0x02
Stop byte	0x01
OK response	0x02 0x01

Frame Data Command

The Frame Data Command byte 0×08 samples a fixed number of times. The sampling rate, between 1/32768 second and 2 seconds, is defined by the Stream / Frame Rate property set using the Configure DARC-I command. The two bytes after the command byte are the number of samples to take.

Each sample record structure is as defined by the Stream / Frame / Log Inputs property (see Stream Data Command). The data are stored as defined for the Set Frame / Log Memory Locations property of the Configure DARC-I command. Each Frame Data command will restart storing data at the beginning of FLMemStart.

When the command is complete, the DARC-I will then respond with an '0201' OK response, or an '0302F4' overflow error if the data could not be sampled fast enough. Data framing cannot take place while data logging is in operation and if a Frame Data Command is sent when *LogRate* is non-zero, an '0302F1' error will be generated.

Note: Framing in not possible while the Real Time Clock is operating. The Real Time Clock is turned off when the Frame Data command is received and it is not turned on again.

Frame Data Example		
Set AN0 and AN1 as analog	0x04 0x02 0x01 0x02	
OK response	0x02 0x01	
Record AN0	0x05 0x01 0x23 0x10 0x01	
OK response	0x02 0x01	
Record AN1	0x05 0x01 0x23 0x11 0x01	
OK response	0x02 0x01	
Set 1ms sample rate	0x05 0x01 0x21 0x05 0x00	
OK response	0x02 0x01	
Log to RAM	0x05 0x01 0x24 0x02 0x02	
OK response	0x02 0x01	
Record 512 values	0x04 0x08 0x00 0x02	
OK response	0x02 0x01	
(Data now in RAM locations 0x000 to 0x7FF)		

Serial Data Command

The Serial Data Command byte 0×09 outputs all bytes after the command byte from the serial port TxD. If the flow control input INT1 is high, the DARC-I will wait until it is low again before sending the data. The OK response will be given when the data has been transmitted.

Serial Data Example							
Send "Hello"	0x07	0x09	0x48	0x65	0x6C	0x6C	0x6F
OK response	0x02	0x01					

Logging Data

There is no Log Data command. Data logging begins as soon as the **LogRate** configuration property is non-zero and continues while it remains non-zero.

The sampling rate is defined by the *LogRate* value. The data are stored as defined for the Set Frame / Log Memory Locations property of the Configure DARC-I command. Each time *LogRate* is changed, logging will restart at the beginning of *FLMemStart*.

Each record will consist of the 8-byte DateTimeU clock time (defined for the Set Date Time property) followed by a sample record structure as defined by the Stream / Frame / Log Inputs property (see Stream Data Command).

Log Data Example			
Set AN0 and AN1 as analog	0x04 0x02 0x01 0x02		
OK response	0x02 0x01		
Record AN0	0x05 0x01 0x23 0x10 0x01		
OK response	0x02 0x01		
Record AN1	0x05 0x01 0x23 0x11 0x01		
OK response	0x02 0x01		
Log to RAM	0x05 0x01 0x24 0x02 0x02		
OK response	0x02 0x01		
Set log to once per sec	0x04 0x01 0x22 0x01		
OK response	0x02 0x01		
(logs to RAM 0x000)	32 18 0D 01 05 04 D5 07 36 01 3B 03		
(logs to RAM 0x00C)	33 18 0D 01 05 04 D5 07 74 01 19 03		
(logs to RAM 0x018)	34 18 0D 01 05 04 D5 07 3C 01 44 03		
(logs to RAM 0x024)	35 18 0D 01 05 04 D5 07 49 01 C0 03		
Stop logging	0x04 0x01 0x22 0x00		
OK response	0x02 0x01		
(Data now in RAM locations 0x000 to 0x030)			

Responses

Responses length will vary according to the length of the command sent. The first byte is the response length byte, equal to the total number of bytes in the message. The second byte is the response byte, which indicates how the remainder of the message should be interpreted.

Responses may be in either ASCII or binary as specified by the ASCII responses property. In ASCII format, each byte is transmitted as two hexadecimal digits and the entire command will be preceded and followed by a <CR><LF> pair (i.e. the control characters 0x0D and 0x0A).

Command Summary					
Response	Response	Interpretation			
-	Byte				
OK	0x01	Acknowledges completion of previous command.			
Error	0x02	Reports an error			
Date Time	0x03	Reports the time and date			
I/O Value	0x04	The value of the requested I/O pin			
Got Memory	0x05	The value of the requested memory location.			
Serial Data	0x06	Serial data was received			
Initialization	0x44	A message sent to indicate initialization is complete.			

OK Response

The response byte 0x01 indicates that the previous command has been processed and another command may be sent.

OK Response Examples	
OK (binary)	0x02 0x01
OK (ASCII)	" <cr><lf>0201<cr><lf>"</lf></cr></lf></cr>

© FlexiPanel Ltd

Error Response

The response byte 0×0.2 indicates that an error has occurred. The byte after the response byte is the *Error Byte*, which specifies the exact error that occurred:

Error Response Error Values					
Error Byte	or Byte				
0xF1	Not understood	The previous command was not understood.			
0xF4	Overflow	Data could not be sampled as fast as requested.			

In addition, if the *On internal error...* property specifies that internal errors should be reported to the host, the error byte may equal any of the ErrorStatus, BMTE_Error, BMTE_Warning error values as defined for the Toothpick product; however, no such errors are expected.

Error Response Examples		
Not understood (ASCII)	" <cr><lf>0302F1<cr><lf>"</lf></cr></lf></cr>	
ErrorStatus error	0x03 0x02 0x0B	
Memory Failure (binary)		

Date Time Response

The response byte 0x03 reports the current date and time to the host. The 8 bytes after the response byte are the date and time in DateTimeU format as defined for the Set Date Time property.

Date Time Response Examples – 13:24:50, Friday, April 1st, 2005				
Date Time (binary)	0x0A 0x03 0x32 0x18 0x0D 0x01 0x05 0x04			
	0xD5 0x07			
Date Time (ASCII)	" <cr><lf>0A0332180D010504D507<cr><lf>"</lf></cr></lf></cr>			

I/O Value Response

The response byte 0×04 reports an I/O input value to the host. The first byte after the response byte indicates which value is being reported and matches those used in the Get I/O Command. The remaining byte(s) will contain the reported value. Its size will vary according to data type as shown in the examples below.

I/O Value Response Examples	
SDO digital input high (binary)	0x04 0x04 0x25 0x01
SDO digital input low (ASCII)	" <cr><lf>04042500<cr><lf>"</lf></cr></lf></cr>
AN3 analog input 0x234 (range 0	" <cr><lf>0504130234<cr><lf>"</lf></cr></lf></cr>
to 1023) (ASCII)	
Parallel A (7-bit) analog input	" <cr><lf>04040614<cr><lf>"</lf></cr></lf></cr>
0x14 (range 0 to 31) (ASCII)	

Got Memory Response

The response byte 0×05 is a response to a Get Memory Data command.

The byte after the command byte is the mStr memory storage type as defined for the Set Memory command. The next two bytes are the Addr memory address (little-endian) as defined for the Set Memory command.

The remaining bytes are the data read from memory mStr starting at location Addr, as requested

Got Memory Response Example						
Report EE memory from 0x0123	0x09	0×05	0x03	0x23	0x01	0x05
being values 0x05 0x06 0x07 0x08.	0x06	0x07	0x08			

Serial Data Response

The response byte 0×06 is indicated that serial data has been received. The bytes after the response byte are the received data. The response is generated when some data has been received and the DARC-I is not busy with other tasks. It is not predictable how a continuous stream of data will be broken up input serial data responses. However, continuous sequences of less than 128 bytes separated by least 16 byte periods of inactivity will normally be conveyed in a single response.

The data are buffered on receipt in the RAM memory locations 0x700 to 0x7FF, which should not be used for any other purpose if the serial port is being used. If the buffer is nearly full, the flow control output pin (INT0) will go high requesting that the sending device stop sending data. It will be placed back in the low state once the buffer has space again.

Serial Data Response Example						
Serial data "Hello".	0×07	0x06	0x48	0x65	0x6C	0x6C
	0x6F					

Initialization Response

The initialization response byte 0x44 indicates that the DARC-I has initialized correctly. The 15 bytes of the response including the response length byte will comprise the bytes 0x11, 0x44, 0x41, 0x52, 0x43, 0x2D, 0x49, 0x20 followed by the Toothpick Services version number as ASCII characters.

Initialization Response Examples – Version 3.0.00004			
· ·	alization complete 0x10 then "DARC-I 3.0.00004"		
(binary)			
Initialization complete " <cr><lf>11444152432D4920</lf></cr>			
(ASCII)	332E302E3030303034 <cr><lf>"</lf></cr>		

Command / Response User Guide

The following tables of groups of commands and responses show how to achieve common tasks with DARC-I.

Initialization	
Response	Meaning
11444152432D4920332E302E3030303034	Initialization successful, version 3.0.00004

Setting SDO as digital output			
Command	Response	Meaning	
04022501	0201	Set SDO to output	
04032501	0201	Set output value to high	

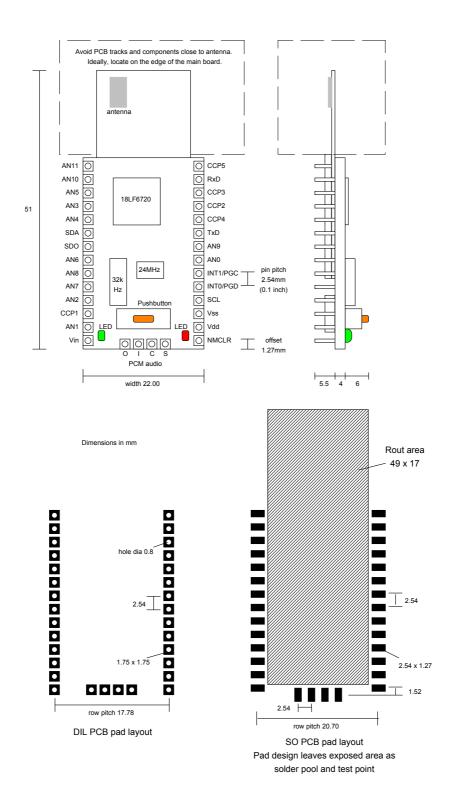
Setting SDO as digital input				
Command	Response	Meaning		
04022300	0201	Set SCL to input		
030423	04042300	Get input value, result 0x00 = low		

Setting CCP1 as CCP output					
Command	Response	Meaning			
04020403	0201	Set PWM time base to 3.2µs			
040205FF	0201	Set PWM period to (0xFF+1) x 3.2µs = 819.2µs (1220Hz)			
04021C02	0201	Set CCP1 to PWM output			
05031C01FF	0201	Set duty cycle to 0x01FF x (3.2µs / 4) = 408.8µs			

Setting AN1 as analog input				
Command	Response	Meaning		
04020102	0201	Set AN0 and AN1 as analog inputs		
030411	05041103EB	Read AN1,		

Setting AN11, AN10, AN9 as parallel output				
Command	Response	Meaning		
04020603	0201	Set parallel output A to 3-bit		
04030605	0201	Set output to 0x05 = 101 binary		

Setting AN11, AN10, AN9 as parallel input				
Command	Response	Meaning		
04020613	0201	Set parallel input A to 3-bit		
030406	04040603	Read input value, result 0x03 = 011 binary		


Customization

The DARC-I module is capable of setting up and controlling I/O and logging data in various ways. In some commercial cases you may wish to customize the DARC module. For example, add power saving features or increase the maximum speed of data acquisition.

To make customization possible, we have made the C source code freely available for you to customize. To do this you will need to know how to program microcontrollers in C and also be familiar with Microchip Technology's MPLAB development environment. Information for customizing the DARC-I is given in the Toothpick documentation available from www.FlexiPanel.com.

Page 22 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Mechanical Data

Notes: To remove the module from an IC socket or breadboard, lever it out using a screwdriver against the pin headers at the sides. Levering from either end may damage components.

Page 23 29-Jan-07 DARC-I DS381-4 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Technical Specifications

Operating / storage temperature	-40°C to +85 °C
Dimensions L × W × H	51mm × 22mm × 10mm excluding pins

Electrical

Hardware platform	Toothpick	Toothpick Lite
Supply Voltage (unregulated)	3.2V to 10V	n/a
Supply Voltage Vdd (regulated)	3.2V to 5.5V	3.2V to 3.4V
Average current, Idle (3.3V supply)	10mA	10mA
Average current, during discovery and connecting	60mA	60mA
Average current, connected, transmitting	30mA	30mA
Average current, connected, receiving	40mA	40mA
Max voltage on I/O pins	-0.5V to Vdd+0.1V	-0.5V to Vdd+0.1V
Max voltage on PCM Audio pins	-0.4V to 3.4V	-0.4V to 3.4V
Maximum current on I/O pins CCP1, INT0, INT1, RxD, SCL, SDA, SDO, TxD	25mA	25mA
Maximum current on I/O pins AN5 – AN11, CCP2	25mA	8mA
Maximum current on I/O pins AN0 – AN4, CCP3 – CCP5	25mA	2mA
Maximum total current on all I/O pins	200mA	200mA

Radio

Max RF output power	Class I = 100mW = +20dBm		
RF frequency range	2402MHz to 2480MHz		
RF channels / frequency hop rate	79 / 1600 Hz		
Range	100m nominal		
Communication latency, μP to μP	8ms to 15ms		
Maximum data rate	50-90 Kbaud depending on conditions		

FCC, CE modular approval

The radio has been pre-qualified and is listed in the Bluetooth Qualified Products as B00524. The radio has 'modular approval' for USA and certain European countries, provided the existing integral antenna is used. The CE mark on the module indicates that it does not require further R&TTE certification. The exterior of the product should be marked as follows:

Contains Transmitter Module FCC ID: QOQWT11

Ordering Contact Details

DARC-I is manufactured and distributed by

R F Solutions Ltd Unit 21, Cliffe Industrial Estate, Lewes, E. Sussex BN8 6JL, United Kingdom email: sales@rfsolutions.co.uk http://www.rfsolutions.co.uk

Tel: +44 (0)1273 898 000, Fax: +44 (0)1273 480 661

Technical Support

DARC-I is owned and designed by FlexiPanel Ltd:

FlexiPanel Ltd 2 Marshall St, 3rd Floor London W1F 9BB, United Kingdom www.flexipanel.com email: support@flexipanel.com