
p1 of 3 15-Apr-09 TEAleaf-USB www.flexipanel.com

TEAleaf-USB
TM

Micro-Sized, Ultra-Low Cost USB Authentication Key for Software Licensing

Summary

TEAleaf-USB is an ultra-low cost, micro-sized
authentication system for verifying that a software
product is authorized and not a pirate copy. It uses a
simple but robust xTEA algorithm to verify that a
TEAleaf-USB device is present.

TEAleaf-USB uses the Human Interface Device (HID)
USB profile. It does not require USB drivers and is
immediately plug-and-play compatible with present and
future Windows, Linux and Mac operating systems.

TEAleaf-USB is available as complete, finished product,
and also as an integrated circuit and design blueprint for
customers with electronics manufacturing capacity.
(See www.firmwarefactory.com.)

Applications

 Computer software copy protection and licensing

 Pay-per-use hardware protection

 True random number generation

Security

 Random-hashed USB communications believed
to be uncrackable

 Quantum limited true random number generator

 Extended Tiny Encryption Algorithm (xTEA)

 128 bit security key

Features

 True USB 2.0 HID plug and play - No drivers
required

 Ultra low cost integrated connector

 Security key, product name, manufacturer name,
GUID configurable from USB interface

 122-byte EEPROM

Authentication Mechanism

Authentication requires the PC and the TEAleaf-USB to
generate random numbers and then test that they both
know how to encrypt and decrypt them. First the PC
needs to prove to the TEAleaf that it knows the 128-bit
key, then the TEAleaf-USB proves it knows it too. Bits
are masked from each proof to ensure that decryption
attacks are fruitless.

A true random number generator provides the required
robustness against hacking. It detects marginal
differences in temperature, operating voltage, device
chemistry, age and quantum effects to derive a
unpredictable value. 192 random bits are generated
during startup. These are then fed into a high-
avalanche polynomial ring to derive a 192-bit random
number.

Device Evaluation

The HIDconfig.exe application in the development kit is
used for evaluation and customization.

1. Start the application and insert the TEAleaf-USB
into a USB socket.

2. Press the Scan key. The TEAleaf-USB device
should appear in the Select list. Press Open.

3. You have connected to the TEAleaf-USB. Press
Random… to generate a random key, then Save…
to save the key onto your computer.

4. Press Write device data to set the TEAleaf key to
the random value. The TEAleaf will reset, so you
need to press Open again.

5. Press Load to load the key you previously saved,
then Test to see if the key is correct. You will see
the text Authenticate Succeeded.

6. Press Random to generate any other key, then Test
to see if the key is correct. You will see the text
Authenticate Failure.

p2 of 3 15-Apr-09 TEAleaf-USB www.flexipanel.com

Device Configuration

The following non-volatile device configuration settings
can be selected from HIDconfig.exe.

Authentication Key

The 128-bit authentication key, expressed as a 32-digit
hexadecimal number. This secret key is known only by
the TEAleaf-USB and your application software.
HIDconfig.exe can set this value, but not read it.

Product Name / Manufacturer Name

The product / manufacturer names are Unicode strings
of up to 61 characters plus zero terminator. The host
application can read these data using a Get Feature
request for string 1 / 2. The PC displays them when
TEAleaf-USB is first inserted. The default values are
“TEAleaf-USB” / “Firmware Factory Ltd”.

Custom VID / PID

Personalized Vendor and Product IDs are not required,
but you can them if you wish. The default Vendor ID is
0x0B40, and the default Product ID is 0x011F.

Write Lock

Once write lock set, no further configuration is possible.

Product GUID

The product GUID is a Unicode string of up to 61
characters plus zero terminator. The host application
can read this data using a Get Feature request for string
4. The product GUID is a string which you can use to
make a hardware security key specific to a particular
software application. It is used to differentiate it from
other security keys with the TEAleaf-USB Vendor ID /
Product ID combination. It should be the same for all
products of the same type. The default value is “No
GUID”.

Config (EEPROM) String

The configuration data is a Unicode string of up to 61
(122 bytes) characters plus zero terminator. You can
use it as you wish to store configuration data on the
product which the host software can access. The host
application can read this data using a Get Feature
request for string 5. The default value is “No Config”.

Max Bus Power; Remote Wakeup

These settings should not be modified from the default
100mA / unchecked.

Host-Side Interfacing

TEAleaf-USB uses the Human Interface Device (HID)
USB interface. It has the advantages that no device
drivers are required, and that a host application can
easily locate the TEAleaf.

All exchanges of data (‘reports’) between the host and
the TEAleaf-USB are 8 bytes in length, regardless of
how many bytes of meaningful data are actually
transferred. In HID terms, all transfers are 10ms
interrupt reports of 8 bytes, to and from output ID 0 on
EP1.

The host software has two perform two tasks. First it
has to locate the device. Then it has to communicate
with it. To locate the device, enumerate all devices with
Vendor ID 0x0B40 and Product ID of 0x011F. Then use
a Get Feature request for the string 4, the Product GUID.
If this matches the product GUID you configured for the
device, you have located it.

Once you have located the device, open a file to
communicate with it. Then send data and receive data
as 8-byte reports.

Sample source code for Windows and a Windows
dynamic link library (DLL) are provided in the
development kit. For a detailed description, please refer
to the comments embedded in the source code and the
Visual Basic example in the Excel spreadsheet. Sample
source code for Mac OS and Linux is in preparation.

Commands

The first byte (‘identifier’) of the 8-byte report in either
direction identifies the remaining contents (‘payload’). If
the command does not require all 8 bytes, then the
contents of the rest are ignored.

Note: Sending a command in the range 0x80-0x8F can
modify settings that may permanently disable the device.
Other than for R&D purposes, the device should be
write-locked when shipped to end-users.

Authenticate

The identifier AUTH (0xA7) is used to initiate the
authentication process. The TEAleaf-USB will reply with
a four-byte random value in the first 4 bytes. To this the
host should append its own four-byte random value in
the second 4 bytes and then encrypt using the xTEA
algorithm given below. The resulting 8-byte value
should be sent to the TEAleaf-USB. It will decrypt the
data to determine the host’s random value and to verify
the random value it sent.

If the value is not correct, TEAleaf will respond with
eight zero bytes. If it is correct, it replaces the random
number with another random value, encrypts and sends
the result to the host. The host decrypts the result to
verify the random value it sent to the TEAleaf-USB. If
the random value is correct, authentication is complete.

Example:

(Key is the factory default FFEEDDCCBBAA99887766554433221100)

A7 00 00 00 00 00 00 00 Auth

13 16 3A 03 00 00 00 00 Random # from TEAleaf-USB

13 16 3A 03 9B 67 2B 99 Host adds random #

44 92 D0 06 8C F5 90 F2 Host encrypts, sends to TEAleaf-USB

13 16 3A 03 9B 67 2B 99 TEAleaf-USB decrypts, verifies random#

20 2D 6A 18 9B 67 2B 99 TEAleaf-USB adds new random #

45 60 6C 84 BF 86 EE C2 TEAleaf-USB encrypts, sends to host

20 2D 6A 18 9B 67 2B 99 Host decrypts and verifies random #

Random

The identifier RANDOM (0xA8) is used to obtain a 4-
byte random number from TEAleaf.

p3 of 3 15-Apr-09 TEAleaf-USB www.flexipanel.com

Example:

A8 Random

2B 73 CE 89 00 00 00 00 00 Random # response from TEAleaf

Get Firmware ID

The identifier GETFWID (0x94) retrieves a zero-
terminated ASCII text string identifying the firmware and
its version number. It will probably need to do so over
several response packets.

Example:

94 Command – Get Firmware ID

94 54 45 41 6C 65 61 66 “TEAleaf”

94 2D 55 53 42 20 30 31 “-USB 01”

94 2E 30 30 20 28 32 34 “.00 (24”

94 35 30 29 00 91 D5 7E “50)”

xTEA Algorithm

The xTEA algorithm is a robust Feistel network
proposed by Needham & Wheeler. For details refer to
RM Needham and DJ Wheeler, TEA extensions,
Technical report, Computer Laboratory, University of
Cambridge, October 1997.

The host-side algorithm is presented below as C code:

// unsigned long integers are 32-bit
// unsigned char integers are 8-bit
// Arg pVal is a 2-long array containing your
// randomly generated challenge
// pVal[0] is challenge bits C31-C0
// pVal[1] is challenge bits C63-C0
// Arg pKey is a 4-long array containing key
// pKey[0] is the least significant 32 bits
// pKey[1] is the next least significant 32 bits
// pKey[2] is the next most significant 32 bits
// pKey[3] is the most significant 32 bits

void Encr(unsigned long *pVal, unsigned long * pKey)
{
 unsigned long sum = 0;
 unsigned long delta = 0x9E3779B9;
 unsigned char i;

 for (i=0; i<32; i++)
 {
 unsigned sa = sum & 0x03;
 unsigned long Key2;
 Key2 = pKey[sa];
 pVal[0] += (((pVal[1] << 4) ^ (pVal[1] >> 5)) +
 pVal[1]) ^ (sum + Key2);
 sum += delta;
 sa = (sum>>11) & 0x03;
 Key2 = pKey[sa];
 pVal[1] += (((pVal[0] << 4) ^ (pVal[0] >> 5)) +
 pVal[0]) ^ (sum + Key2);
 }
}

// On exit the TEAleaf’s response must match pVal
// pVal[0] is response bits R31-R0
// pVal[1] is response bits R47-R32
// (ignoring 16 highest bits of pVal[1])

The application HIDconfig.exe in the development kit
pack can generate data for verifying implementations of
the algorithm.

Security Considerations

Robustness is a matter of pride and competition
between authentication key providers. We therefore are
proud to present an key mechanism that is believed to
be uncrackable.

The random-hashed xTEA algorithm has a very high
avalanche effect and is extremely robust against
plaintext and related-key differential attacks. Hashing
with random number values generated by both PC and
TEAleaf is non-reversible and stops to multiple attacks.

Care should be taken that the host-side algorithm
executable code does not expose the key. The
following precautions are recommended:

 Deriving the key algorithmically rather than
storing explicitly in program code.

 Optimize your code for minimum code size and
memory space. This is the hardest to type of
code to reverse engineer.

 Insert dummy calculations into the algorithm to
make it harder to identify.

Development Kit

A development kit is available for download from
www.flexipanel.com containing the following files:

 HIDconfig.exe, an application which allows you
to customize TEAleaf-USB devices via the USB
port. It is designed for low labor in-factory use
and also serves to test the USB circuit.

 usb-win.c and usb-win.h, sample HID code for
Windows. Additionally the files setupapi.h,
hidsdi.h, hidpi.h, setupapi.lib and hid.lib are
provided, which must be included in the
application.

 FwFhid.dll dynamic link library and Visual Basic
example FwFhidDLLExample.xls.

 USB 2.0 Specification (© HP / Intel / Lucent /
Microsoft / NEC / Philips 2000)

Design Blueprint

A design blueprint is available for customers who wish
to manufacture TEAleaf-USB. The blueprint requires a
signed nondisclosure agreement and consists of the
following files:

 TLUrx BOM.xls blueprint bill of materials.

 TLUrx Gerber.zip blueprint PCB Gerbers.

 TLUrx BOM.pdf schematic and component
placement diagram.

FlexiPanel Ltd
3 Plough Yard, Gnd Floor
London W1F 9BB, UK
www.flexipanel.com
email: support@flexipanel.com

Manufactured to RoHS,
WEEE & ISO9001:2001 standards

