
Page 1 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

FlexiPanel

MAC API™
Application Program Interface for IEEE 802.15.4 Protocol

Summary
The MAC API is designed to be a very simple
programming interface for developers of non-
beacon IEEE 802.15.4 applications. It may be
used for the rapid application development of
single-hop products with minimal prior knowledge
of the IEEE 802.15.4 specification or radio
communications.

IEEE 802.15.4 is designed for single-hop low-
power, low data rate networks. Its multi-hop
extension. known as ZigBee, is more well-known.
However, the multi-hop nature of ZigBee means
that it is more complicated to implement. In
addition, broadcasting to all nodes in the network
is much more efficient in a single-hop network,
making it more suited to data-bus (e.g. RS485)
cable replacement.

Certain IEEE 802.15.4 devices may sleep.
However, in order to do so, their messages must
be cached by the network coordinator and their
ability to participate in direct communications with
other devices in the network will be limited.

Compatibility

The API is fully compatible with all non-beacon
IEEE 802.15.4 products, including:

- StarLite
- StarLite USB
- MAC API
- MACdongle

Features

MAC API incorporates the following features:

• Long- and short-address data
communications

• Association and disassociation

• Active, passive energy density and orphan
scans

• Device sleep and coordinator polling

• Orphan indication

• Promiscuous mode for packet sniffing

MAC API is free, provided it is used with
FlexiPanel Pixie radio products only.

Page 2 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Contents

Summary ..1
Compatibility...1
Features ...1
Contents...2

IEEE 802.15.4 Overview3
MAC API Overview...4

Device Types ...4
Frequency channels...4
MAC-address communications4
Short-address communications4
Sleep Management..5
Notation, Byte & Bit order5
Releasing Memory ...5
Copy Protection..5
Evaluation Kit ...5
Release notes, version
0B400115103621051106tt.................................6
Bibliography ...6

Firmware Development Guide............................7
Applications Examples.......................................7
Function Reference..8
Data Types...8
MACAPIInit() ..8
MACAPITasks() ...8
PHY Messages ..8

PD-DATA.indication8
Internal PHY States ...9
MAC Messages..9

MCPS-DATA.request9
MCPS-DATA.confirm10
MCPS-DATA.indication10
MCPS-PURGE.request10
MCPS-PURGE.confirm10
MLME-ASSOCIATE.request11
MLME-ASSOCIATE.indication11
MLME-ASSOCIATE.response11
MLME-ASSOCIATE.confirm11
MLME-DISASSOCIATE.request12
MLME-DISASSOCIATE.indication...............12
MLME-DISASSOCIATE.confirm12
MLME-BEACON-NOTIFY.indication............12
MLME-GET.request......................................13
MLME-GET.confirm......................................13
MLME-GTS.request......................................13
MLME-GTS.confirm......................................13
MLME-GTS.indication13
MLME-ORPHAN.indication13
MLME-ORPHAN.response...........................14
MLME-RESET.request.................................14
MLME-RESET.confirm14
MLME-RX-ENABLE.request14
MLME-RX-ENABLE.confirm.........................14
MLME-SCAN.request...................................14

MLME-SCAN.confirm 15
MLME-COMM-STATUS.indication.............. 16
MLME-SET.request 16
MLME-SET.confirm 17
MLME-START.request 17
MLME-START.confirm 17
MLME-SYNC.request 17
MLME-SYNC-LOSS.indication 17
MLME-POLL.request................................... 18
MLME-POLL.confirm 18

Callback Functions.. 18
void PriorityUserInterruptHandler(void) 18
void UserInterruptHandler(void) 18
void MACAPIHook (void)............................. 18

Utility Functions... 18
Macros... 19
Development Kit Inventory 20
Development Support 20
Revision History .. 20
Contact details... 20

Page 3 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

IEEE 802.15.4 Overview
The IEEE 802.15.4 communications protocol is a low power, low data rate communications protocol.
(practically speaking, approximately 38.4 kbaud in FlexiPanel products).

Communication is single-hop between up to 65K devices. Messages may be broadcast and any node can
address any other.

Devices are allowed to sleep, but in doing so they must rely on the central coordinator to cache messages for
them, and their ability to participate in communications with other devices will be limited.

The protocol is low cost and easy to implement. It is the protocol of choice if greater complexity is not
required.

No profiles are defined by the IEEE 802.15.4 standard. Data is simply transferred as a payload in a packet
which may be up to 127 bytes, including packet addressing headers.

Each IEEE 802.15.4 device must be assigned a unique MAC address. IEEE 802.15.4 products from
FlexiPanel are pre-assigned MAC addresses. In some instances it is not possible to store a MAC address on
the product when shipped and you will need to request an allocation of MAC addresses from us.

For a broad introduction to the different types of RF firmware available from FlexiPanel, refer to DS500, RF
Transceiver Selection Guide.

Page 4 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MAC API Overview
MAC API is a standard non-beacon implementation of the IEEE 802.15.4 communications specification. This
overview provides a general introduction to non-beacon IEEE 802.15.4 networks, but only in sufficient detail to
implement working networks with MAC API devices and other devices in the FlexiPanel IEEE 802.15.4
firmware range. The Usage Examples section that follows shows examples of actual function calls. In
addition, the source code for our two commercial applications that use the MAC API (StarLite and MAC API) is
available for inspection in the MAC API development kit.

Device Types

Three types of device are implemented on each of Pixie and Pixie Lite, each with a different library build. It is
not possible to switch between device types at runtime:

MAC API PixC.lib Pixie Coordinator
MAC API PixF.lib Pixie Fast End Device
MAC API PixS.lib Pixie Sleepy End Device
MAC API PixLiteC.lib Pixie Lite Coordinator
MAC API PixLiteF.lib Pixie Lite Fast End Device
MAC API PixLiteS.lib Pixie Lite Sleepy End Device

Coordinators, usually one per network, decide network parameters such as operating frequency, network
membership and short address. They should remain on all the time and are able to cache messages for
devices that sleep.

End devices participate in a network created by a coordinator. Fast end devices stay on all the time, can send
messages to any other devices and can transmit and receive broadcast messages. Sleepy end devices use
the coordinator to cache message for them. This allows them to sleep, at the cost of only being able to
communicate with the coordinator and unable to accept broadcast communications while sleeping.

Frequency channels

Pixie operates in the 2.4GHz frequency band on sixteen channels numbered 11 to 26 (0x0B to 0x1A in hex).

MAC-address communications

In theory, devices can communicate at any time by addressing each other by their MAC address (8 bytes,
otherwise known as the long address). However, this requires that frequency channel and the MAC address
of every device be known in advance, and also than no devices sleep. This is not practical for commercial
products, but can be useful for one-off custom designs, since no network needs to be started or joined.

Short-address communications

In order to be able to share airspace, and to permit devices to learn who to talk to at installation time rather
than at the factory, commercial systems need use short-addressing. The coordinator will start and assign
itself a short address (2 bytes) and a network-wide PAN ID (2 bytes). Then other devices ask to join the
network and the coordinator will remember their long address and allocate a short address in return. The long
address is only used thereafter if the network reinitializes and devices need discover the new frequency and
PAN ID. Typically the joining process is only permitted to occur by pressing a ‘bind’ button on the coordinator.
This ensures the correct device joins the correct network in a secure manner.

Page 5 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Sleep Management

The PXMS versions of the firmware are allowed to sleep. They are put into sleep mode when the sleep pin
goes high; during sleep, the RTS pin will output high.

Sleepy devices can only receive unicast data from the coordinator; to do so they must specifically request it
using the poll request command. The coordinator will also need to remember which devices sleep in order to
know whether or not to cache their messages.

Notation, Byte & Bit order

All numbers in this documentation are in decimal unless prefixed with 0x, in which case they are hexadecimal.
Index counting starts at zero, so the first byte of a message is byte zero.

Multi-byte data is transmitted least-significant byte first (‘little-endian’), as is standard in the IEEE 801.15.4
specification.

Releasing Memory

It is very important that you free the memory passed back to you by MLME_BEACON_NOTIFY_indication,
MCPS_DATA_indication, PD_DATA_indication and MLME_SCAN_confirm, even if you do not anticipate
using these functions.

Copy Protection

To protect against copying, if the MAC API firmware is run on any hardware except FlexiPanel Pixie products,
it will cease to function after approximately two minutes. Steinlaus tags are also included in the code.

Evaluation Kit

The easiest way to get to know MAC API is with the ZigBee Evaluation Kit available from FlexiPanel. This will
also require a Microchip ICD2 In-Circuit Debugger to program the firmware into the Pixies supplied.

In the evaluation boards, the I/O pins are connected as follows:

Pin
Number

Pin Name Description

7 Sleep Switch labeled “EP2 A2”
10 RTS LED labeled “A4 / EP5 / RTS”
11 CTS Switch labeled “Config SW”

Ensure jumper A8 – A9 is fitted.
17 nReset Reset push switch
19 TxD Serial output (8N1, 115200 baud)
21 RxD Serial data input (8N1, 115200 baud)

Please note the following:

1. Remove A1-B1, A2-B2, A3-B3 during programming and fit them again after. The configuration bits are
specified in the file “FCS MAC API”.

2. For RS232 connection, fir jumper A4-B4. For Pixie Config Tool connection, remove the jumper. (Applies
to ZEVr4 and higher board revisions.)

3. Fit jumpers A5-B5, A6-B6, A10-B10.

Page 6 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

4. Fit jumper A8-A9. This connects the CTS input to the switch labeled “Config SW” so you can simulate
flow control being halted by the host device. In normal operation, it must be in the low position or you will
not get a response from the MAC API!

5. The sleep input connects to the switch labeled “EP2”. Normally this should be in the low position. If you
put it in the low position, Pixie will enter its sleep mode. This will be indicated by the RTS line going high
and the RTS led lighting. (Applies to PXMS firmware only; the others can’t sleep.)

Release notes, version 0B400115103621051106tt

tt refers to the device type. Refer to the DVRC message for details.

In this release, security is not supported. SQTP programming of MAC addresses is supported – refer to the
Pixie data sheet for details.

Bibliography

IEEE 802.15.4 specification, downloadable from www.ieee.org.

DS500, RF Transceiver Selection Guide downloadable from www.FlexiPanel.com.

Page 7 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Firmware Development Guide
The Microchip Technology MPLAB development environment and C18 compiler will be needed to
develop MAC API applications. A debugger such as the Microchip Technology ICD2 is
recommended. Please refer to Microchip Technology documentation for full details on how to
develop applications for PIC microprocessors.

A MAC API application project include the following files:

MACAPI.h Header file for MAC API library functions and data.

MAC API TTTD.lib MAC API library. TTTD signifies the different library versions:
TTT indicates hardware, being Pixie (Pix) or Pixie Lite
(PixLite). D indicates device type, being Coordinator (C),
Router (R), Fast End Device (F) or Sleepy End Device (S).

MACLinkXXXX.lkr Required linker script. XXXX is 4620 for Pixie and 2520 for Pixie
Lite.

You will also need to provide code for your main application program and also specify the
configuration bits you require. The following memory model settings should be specified:

- Small code model
- Large data model
- Single-bank model

The oscillator configuration must be set for a 16MHz clock. If using the internal oscillator block, set
the oscillator setting to Internal RC and include the following lines in your startup code:

 OSCCONbits.IRCF1 = 1; // changes to <IDCF2:IDCF0>=110 = 4MHz
 OSCTUNEbits.PLLEN = 1; // PLL 4MHz -> 16MHz
 Delay1KTCYx(100); // allow 25ms for clock to settle

Applications Examples

The firmware for the StarLite application is included in the developer’s kit. Please study it as an
example of implementing an application using MAC API.

The PixieMAC application is a wrapper to the MAC API. It provides access to the MAC layer via
AT-like commands. The Usage Examples section of the PixieMAC documentation contains
extended information on how the various requests, confirmations, indications and responses work.

Page 8 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Function Reference

Data Types

A variety of data structures are declared in MAC API.h. Most have rather obvious functions and will not be
documented in detail – refer to MAC API.h for further information.

The PARAMS structure is extensive and is detailed in the MACAPITasks() section. For efficiency, it contains
unused sections with variable names beginning with the word filler. These may be ignored.

MACAPIInit()

MACAPIInit() initializes the stack. It will enable high and low priority interrupts. The function should be called
once during initialization.

MACAPITasks()

This section describes the function of the MAC API state machine based on its currentPrimitive argument on
entry to and on exit from MACAPITasks.

Related information is stored in the params structure. For example, the SrcAddr variable referred to in
MCPS_DATA_request below is actually params.MCPS_DATA_request. SrcAddr.

All params fields named Status will be 0x00 to indicate success; otherwise the status code will be equal to an
IEEE 802.15.4 status code (refer to IEEE 802.15.4 specification section 2.1).

There are four types of primitive: Requests made by the application, Confirmations of requests returned by
the stack, asynchronous Indications provided to the application, and Responses which are required by the
stack for some indications.

Unless otherwise noted, a new request should not be made unless a confirmation has been received
pertaining to the previous request.

It is very important that you free the memory passed back to you by MLME_BEACON_NOTIFY_indication,
MCPS_DATA_indication, PD_DATA_indication and MLME_SCAN_confirm, even if you do not anticipate
using these functions.

PHY Messages

PD-DATA.indication

When promiscuous mode is not set, PD_DATA_indication should be treated as an internal MAC API state..

When promiscuous mode is set, (refer to MLME_GET_request), no address filtering is applied and all
received packets are intercepted at the PHY level and passed to the application as PD_DATA_indication
messages. The FCS (checksum) field will have been already verified and, contrary to the IEEE 802.15.4
specification, the first and second bytes of the FCS field will contain CC2420-defined RSSI and LQI values.

Note that the psdu payload must be freed by the application after use by calling MACDiscardRx(). When
promiscuous mode is set, application must call MACDiscardRx() to free the sdu data payload once the
PD_DATA_indication has been processed.

PD_DATA_indication
psduLength Packet length in bytes (PHR)
psdu Pointer to PHY payload

IEEE 802.15.4 section 6.2.1.3

Page 9 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Internal PHY States

The following states are always internal to the MAC API:

 PD_DATA_request
 PD_DATA_confirm
 PLME_CCA_request
 PLME_CCA_confirm
 PLME_ED_request
 PLME_ED_confirm
 PLME_GET_request
 PLME_GET_confirm
 PLME_SET_TRX_STATE_request
 PLME_SET_TRX_STATE_confirm
 PLME_SET_request
 PLME_SET_confirm

When the stack is in one of these states, the application should not modify the currentPrimitive or the params
structure. When it has completed its own processing, the application should call MACAPITasks() again with
these variables unaltered.

MAC Messages

MCPS-DATA.request

MCPS_DATA_request requests a data packet be transmitted. Prior to making the request, the payload data
should be placed in the buffer pTxData. A MCPS_DATA_confirm of an indirect transmission will only be
generated when the transmission has completed; in this case, you do not have to wait for the
MCPS_DATA_confirm before issuing the next request.

MCPS_DATA_request
msduLength Length of payload msdu to follow
FrameType 0x00 = Beacon frame

0x01 = Data frame
0x02 = Ack frame
0x03 = MAC command frame

TxOptions Transmit options:
 Bit 0 = acknowledged transmission
 Bit 1 = GTS transmission

Bit 2 = indirect transmission
Bit 3 = security enabled transmission.

SrcPanId Source PAN ID
SrcAddrMode Source addressing mode (0x02 = short, 0x03 = long)
DstAddrMode Destination addressing mode (0x02 = short, 0x03 = long)
SrcAddr Source address. (If SrcAddrMode specifies short addresses,

ignore last 6 bytes.)
DstAddr Destination address. (If DstAddrMode specifies short

addresses, ignore last 6 bytes.)
DstPanId Destination PAN ID
msduHandle Data handle. (Ignored; the current macDSN value is used and

then incremented.)
msdu (Ignored)

IEEE 802.15.4 section 7.1.1.1

Page 10 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MCPS-DATA.confirm

MCPS_DATA_confirm responds to an MCPS_DATA_request. Note that MCPS_DATA_confirm messages
can be generated in response to internally generated MCPS-DATA.requests. If not received in response to
an MCPS_DATA_request command with a matching data handle, the confirmation should be ignored.

MCPS_DATA_confirm
status Result as enumeration
msduHandle Data handle (equals macDSN number at time of request)

IEEE 802.15.4 section 7.1.1.2

MCPS-DATA.indication

MCPS_DATA_indication indicates a data packet has been received. Note that CC2420 Auto-ACK is set, so
packets are automatically acknowledged at the MAC level when not in promiscuous mode.

The application must call MACDiscardRx() to free the msdu data payload once an MCPS_DATA_indication
has been processed.

MCPS_DATA_indication
msduLength Length of payload msdu
SecurityUse Security indicator
SrcPanId Source PAN ID
SrcAddrMode Source addressing mode (0x02 = short, 0x03 = long)
DstAddrMode Destination addressing mode (0x02 = short, 0x03 = long)
SrcAddr Source address. (If SrcAddrMode specifies short addresses,

ignore last 6 bytes.)
DstAddr Destination address. (If DstAddrMode specifies short

addresses, ignore last 6 bytes.)
DstPanId Destination PAN ID
mpduLinkQuality Link quality
ACLEntry macSecurityMode parameter
msdu Payload received

IEEE 802.15.4 section 7.1.1.3

MCPS-PURGE.request

MCPS_PURGE_request requests a transmit packet gets purged from the queue.

MCPS_PURGE_request
msduHandle Data handle

IEEE 802.15.4 section 7.1.1.4

MCPS-PURGE.confirm

MCPS_PURGE_confirm reports on a purge operation.

MCPS_PURGE_confirm
status Result as enumeration
msduHandle Data handle

IEEE 802.15.4 section 7.1.1.5

Page 11 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-ASSOCIATE.request

MLME_ASSOCIATE_request requests an association with a PAN coordinator.

MLME_ASSOCIATE_request
CapabilityInfo Capabilities of associating device

 Bit 0: True if Alt PAN Coordinator capable
 Bit 1: True if Full Function Device
 Bit 2: True if mains powered
 Bit 3: True if Rx-on-when idle (i.e. not sleepy)
 Bit 4: Reserved
 Bit 5: Reserved
 Bit 6: True if security capable
 Bit 7: True if short address is to be allocated

SecurityEnable True if security enabled
LogicalChannel Channel on which to associate
CoordAddrMode Coordinator addressing mode (0x02 = short, 0x03 = long)
CoordAddress Coordinator address. (If CoordAddrMode specifies short

addresses, ignore last 6 bytes.)
CoordPANid Coordinator PAN ID

IEEE 802.15.4 section 7.1.3.1

MLME-ASSOCIATE.indication

MLME_ASSOCIATE_indication indicates the reception of an association request from another device. An
MLME_ASSOCIATE_response must be generated in response to the indication.

MLME_ASSOCIATE_indication
CapabilityInfo Capabilities of associating device (see +MASR)
SecurityEnable True if security enabled
DeviceAddr Associating device address
ACLEntry macSecurityMode parameter

IEEE 802.15.4 section 7.1.3.2

MLME-ASSOCIATE.response

MLME_ASSOCIATE_response initiates a response to a request for association with a PAN coordinator.

MLME_ASSOCIATE_response
Status Result as enumeration

 0x00 = Association successful
 0x01 = PAN at capacity
 0x02 = PAN access denied

SecurityEnable True if security enabled
AssocShortAddr Short address allocated
DeviceAddress Address of device requesting association

IEEE 802.15.4 section 7.1.3.3

MLME-ASSOCIATE.confirm

MLME_ASSOCIATE_confirm confirms the completion of an association request.

MLME_ASSOCIATE_confirm
Status Result as enumeration
DeviceAddr Short address allocated to this device by the coordinator

IEEE 802.15.4 section 7.1.3,4

Page 12 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-DISASSOCIATE.request

MLME_DISASSOCIATE_request requests disassociation from a PAN coordinator.

MLME_DISASSOCIATE_request
DisassocReason Dissociation reason
SecurityEnable True if security enabled
DeviceAddress Device address

IEEE 802.15.4 section 7.1.4.1

MLME-DISASSOCIATE.indication

MLME_DISASSOCIATE_indication indicates the reception of a disassociation request.

MLME_DISASSOCIATE_indication
DisassocReason Dissociation reason
SecurityEnable True if security enabled
DeviceAddress Device address
ACLEntry macSecurityMode parameter

IEEE 802.15.4 section 7.1.4.2

MLME-DISASSOCIATE.confirm

MLME_DISASSOCIATE_confirm confirms the completion of a disassociation request.

MLME_DISASSOCIATE_confirm
Status Result as enumeration

IEEE 802.15.4 section 7.1.4.3

MLME-BEACON-NOTIFY.indication

MLME_BEACON_NOTIFY_indication indicates the reception of a beacon. The application must call
MACDiscardRx() to free the sdu data payload once the MLME_BEACON_NOTIFY_indication has been
processed.

MLME_BEACON_NOTIFY_indication
sduLength Length of payload sdu
SecurityUse Security indicator
CoordPanId Coordinator PAN ID
CoordAddrMode Coordinator addressing mode (0x02 = short, 0x03 = long)
LogicalChannel Logical channel
CoordAddr Coordinator address. (If CoordAddrMode specifies short

addresses, ignore last 6 bytes.)
Timestamp Timestamp
BSN Sequence number
SecurityFailure Security failure
GTSpermit Coordinator accepts GTS requests
SuperframeSpec Superframe specification (AssocPermit is bit 15)
LinkQuality Link quality
ACLEntry macSecurityMode parameter
(AddrList) (Beacon networks not supported, so AddrList not provided)
sdu Beacon payload

IEEE 802.15.4 section 7.1.5.1

Page 13 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-GET.request

MLME_GET_request requests MAC and PHY attribute data. Refer to MLME-SET for a list of available
attributes. If the currentPrimitive is set to MLME_GET_request, MACAPITasks() is guaranteed to return
immediately with currentPrimitive is set to MLME_GET_confirm. Therefore g et requests may be
performed ad hoc rather than as part of the state machine loop, provided the state machine is idle.

MLME_GET_request
Attribute Attribute requested

IEEE 802.15.4 section 7.1.6.1

MLME-GET.confirm

MLME_GET_confirm confirms attribute data.

MLME_GET_confirm
status Result as enumeration
Attribute Attribute (see table in MLME_SET_confirm section)
AttributeValue Attribute value

IEEE 802.15.4 section 7.1.6.2

MLME-GTS.request

MRGT requests a guaranteed time slot allocation or deallocation. The command relates to beacon networks
and is currently not supported.

MLME-GTS.confirm

MCGT confirms a request for a guaranteed time slot allocation or deallocation. The command relates to
beacon networks and is currently not supported

MLME-GTS.indication

MGTC indicates that a guaranteed time slot allocation or deallocation has occurred. The command relates to
beacon networks and is currently not supported

MLME-ORPHAN.indication

MLME_ORPHAN_indication indicates the presence of an orphaned device. A MLME_ORPHAN_response
must be generated indicating whether or not this device is the PAN coordinator for the orphan device.

MLME_ORPHAN_indication
SecurityUse True if security enabled
OrphanAddr Orphan device address
ACLEntry macSecurityMode parameter

IEEE 802.15.4 section 7.1.8.1

Page 14 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-ORPHAN.response

MLME_ORPHAN_response responds to the presence of an orphaned device.

MLME_ORPHAN_response
AssociateMember True if associated with this coordinator
SecurityEnable True if security enabled
OrphanAddr Orphan address
ShortAddr Short address

IEEE 802.15.4 section 7.1.8.2

MLME-RESET.request

MLME_RESET_request requests that a reset operation is performed.

MLME_RESET_request
SetDefaultPIB If true, resets non-volatile attributes

IEEE 802.15.4 section 7.1.9.1

MLME-RESET.confirm

MLME_RESET_confirm confirms the result of a reset operation.

MLME_RESET_confirm
status Result as enumeration

IEEE 802.15.4 section 7.1.9.2

MLME-RX-ENABLE.request

MRXR requests the receiver is enabled for a finite time. The command relates to beacon networks and is
currently not supported.

MLME-RX-ENABLE.confirm

MRXC confirms a request for the receiver to be enabled for a finite time. The command relates to beacon
networks and is currently not supported

MLME-SCAN.request

MLME_SCAN_request requests that a scan operation is performed. The following types of scan are possible:

Energy detect: Report radio activity density on channel, including Bluetooth and Wi-Fi, etc.

Passive scan: Listen for & report IEEE 802.15.4 activity on channel, including ZigBee, MailBox, etc.

Active scan: Issue beacon requests and listen for beacon responses from IEEE 802.15.4 devices on channel,
including ZigBee, MailBox, etc.

Orphan scan: Issue orphan notification on channels and listen for claim of ownership (coordinator
realignment) from a coordinator.

Page 15 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME_SCAN_request
Scan type Scan type (00 = Energy detect, 01 = Active scan, 02 = Passive

scan, 03 = Orphan scan
Scan duration Scan duration
Scan channels Scan channels

Bit 11 = true to scan channel 0x0B
Bit 12 = true to scan channel 0x0C, etc

IEEE 802.15.4 section 7.1.11.1

MLME-SCAN.confirm

MLME_SCAN_confirm confirms the result of a scan operation. Note that in the case of an orphan scan, a
successful result will automatically set the macCoordExtendedAddress, macCoordShortAddress, macPANId,
macShortAddress and phyCurrentChannel attributes to the correct values.

Note: all scan confirmations except orphan scan return lists that must be freed from memory using SRAMfree()
after use. Passive and Active scans return a linked list of memory blocks, all of which must be freed.

MLME_SCAN_confirm
status Result as enumeration (0xEA = No networks found on active scan)
ResultListSize Number of results returned
Filler1 (ignore)
Scan type Scan type
Filler2 (ignore)
Unscanned
channels

Unscanned channels

EnergyDetectList† Energy detect list (1-byte values equal to [RSSI+128])
PanDescrList† PAN Descriptor list (20-byte PAN Descriptor values)
† EnergyDetectList for energy detect scans only. PanDescrList is for active and passive
scans only. If the pointer is to an EnergyDetectList, it is a single block of memory that
must be freed with SRAMfree(). If the pointer is to a PanDescrList, it is a linked list of
blocks each of which must be freed with SRAMfree().

IEEE 802.15.4 section 7.1.11.2

The PAN Descriptor List elements have the following format:

Flags Bit 0: 1 for CoordAddrMode long, 0 for short
Bit 1: GTSPermit
Bit 2: SecurityUse
Bit 3: SecurityFailure
Bits 4-7: ACLEntry

LogicalChannel Logical channel
CoordPANid Coordinator PAN ID
CoordAddress Coordinator address. (If CoordAddrMode specifies short

addresses, ignore last 6 bytes.)
SuperframeSpec Superframe specification
Timestamp Timestamp
LinkQuality Link quality as reported by CC2420
next Pointer link to next element in PAN Descriptor List

IEEE 802.15.4 section 7.1.11.2

Page 16 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-COMM-STATUS.indication

MLME_COMM_STATUS_indication indicates a communications status. In many cases they are
confirmations only and may be internally generated (e.g. in response to a MLME-POLL.request) and may be
ignored.

MLME_COMM_STATUS_indication
status Result as enumeration
PanId PAN ID (not populated since always macPANId)
SrcAddrMode Source addressing mode (not populated since always

0x03=long)
DstAddrMode Destination addressing mode (not populated since always 0x03)
SrcAddr Source address (not populated since always MAC address)
DstAddr Destination address.

IEEE 802.15.4 section 7.1.12.1

MLME-SET.request

MLME_SET_request requests to set certain MAC and PHY attributes. If the currentPrimitive is set to
MLME_SET_request, MACAPITasks() is guaranteed to return immediately with currentPrimitive is set to
MLME_SET_confirm. Therefore set requests may be performed ad hoc rather than as part of the state
machine loop, provided the state machine is idle.

MLME_SET_request
Attribute Attribute # to be set (see table below)
AttributeValue Attribute value

IEEE 802.15.4 section 7.1.13.1

The following attributes are implemented. Caution should be used in setting attributes. Setting values may or
may not have an effect depending on the state of the stack.

Attribute Bytes Attr # Settable?
phyCurrentChannel 1 byte 0x00 Yes
phyTransmitPower 1 byte† 0x02 Yes ‡

phyCCAMode 1 byte 0x03 Constant = 3
macAckWaitDuration 3 bytes 0x40 Constant (one

second)
macAssociationPermit 1 byte (Boolean) 0x41 Yes

macBattLifeExt 1 byte (Boolean) 0x43 Constant = 0
macBattLifeExtPeriods 1 byte (Boolean) 0x44 Yes

macBeaconPayload macBeaconPayloadLength 0x45 Yes
macBeaconPayloadLength 1 byte 0x46 Constant = 3

macBeaconOrder 1 byte 0x47 Constant = 15
macCoordExtendedAddress 8 bytes 0x4A Yes

macCoordShortAddress 2 bytes 0x4B Yes
macDSN 1 byte 0x4C Yes

macMaxCSMABackoffs 1 byte 0x4E Yes
macMinBE 1 byte 0x4F Yes
macPANId 2 bytes 0x50 Yes

macPromiscuousMode§ 1 byte (Boolean) 0x51 Yes
macShortAddress 2 bytes 0x53 Yes

macSuperframeOrder 1 byte 0x54 Constant = 15
macTransactionPersistenceTime 1 byte 0x55 Yes ‡

All other PIBs Not implemented
† Format as specified in CC2420 PA_LEVEL specification, e.g. FF = 0dBm, EF = -7dBm, etc.
‡ Nonvolatile value, will be remembered after power off

Page 17 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

§ In promiscuous mode, no address filtering nor MAC-level processing of received packets
takes place. Received packets are translated to PDAI commands instead. This is intended for
IEEE 802.15.4 sniffers. MAC level requests may fail.

IEEE 802.15.4 section 7.4 (Tables 71 and 72)

MLME-SET.confirm

MLME_SET_confirm confirms a request to set attribute data.

MLME_SET_confirm
status Result as enumeration
Attribute Attribute

IEEE 802.15.4 section 7.1.13.2

MLME-START.request

MLME_START_request requests that a start operation is performed. For non-beacon networks, this doesn’t
amount to much: for coordinators, it sets the frequency channel and PAN ID, but not the short address.

MLME_START_request
Flags Bit 0: PANCoordinator

Bit 1: BatteryLifeExtension, should equal 0
Bit 2: CoordRealignment
Bit 3: SecurityEnable

PANid PAN ID
LogicalChannel Logical frequency channel
BeaconOrder Beacon order (should equal 0F)
SuperframeOrder Superframe order (should equal 0F)

IEEE 802.15.4 section 7.1.14.1

MLME-START.confirm

MLME_START_confirm confirms the result of a start operation.

MLME_START_confirm
status Result as enumeration

IEEE 802.15.4 section 7.1.14.2

MLME-SYNC.request

MSYR requests to synchronize with a coordinator. The command relates to beacon networks and is currently
not supported.

MLME-SYNC-LOSS.indication

MSLI indicates loss of synchronization with a coordinator. The command relates to beacon networks and is
currently not supported.

Page 18 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MLME-POLL.request

MLME_POLL_request requests data from the coordinator. These must be sent regularly by sleepy end
devices in order to retrieve data that is being cached for them by a coordinator.

Note that the source address mode for the data request that would have originated the message must match
the addressing mode of the message being sent; the source address mode will be long if the short address is
0xFFFF or 0xFFFE, or short otherwise. An MLME_POLL_confirm confirmation will only be issued when no
further data is pending; otherwise, the response will be an MLME_DATA_indication.

MLME_POLL_request
SecurityEnable Security enabled
CoordAddrMode Coordinator addressing mode (0x02 = short, 0x03 = long)
DstAddr Coordinator address. (If DstAddrMode specifies short

addresses, ignore last 6 bytes.)
DstPanId Coordinator PAN ID

IEEE 802.15.4 section 7.1.16.1

MLME-POLL.confirm

MLME_POLL_confirm confirms a request for data from the coordinator. If data is available, the response will
be an MDAI_data_indication rather than an MPLC poll confirm.

MLME_POLL_confirm
status Result as enumeration

IEEE 802.15.4 section 7.1.16.2

Callback Functions

The following three callback functions must be provided even if they are not used:

void PriorityUserInterruptHandler(void)

Used for very high priority interrupt processing. This takes precedent over all other processing, including
caching incoming ZigBee messages. Anything using the priority interrupt handles must complete very quickly.
Typically it will be used to note that an event has occurred, for example UART data has been received, so that
it may be processed at a later time.

void UserInterruptHandler(void)

Used for normal priority interrupt processing.

void MACAPIHook (void)

ZigBeeHook allows advanced users to sneak look at the state of the ZigBee stack. If you investigate the
ZigBee stack source, you can declare variables as extern and inspect them from within this hook function.
DO NOT modify any variables - that would invalidate stack compliance.

Utility Functions

The utility functions are parts of the ZigBee stack which have been exposed because the application may also
have independent uses for them. Note: MACAPIInit() must be called before using any of these functions.

void NVMWrite(NVM_ADDR *dest, BYTE *src, BYTE count)

Page 19 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

NVMWrite writes up to 255 bytes to nonvolatile memory. Note that the entire 0x40-byte-aligned section of
memory is erased and restored during this process, so the entire section of memory should not contain
executable code. Data is verified before writing, so writing identical values to the memory does not exhaust it.

void NVMRead(BYTE *dest, NVM_ADDR *src, BYTE count)

NVMRead reads up to 255 bytes of nonvolatile memory.

TICK TickGet(void)

TickGet provides a clock which counts symbols (1/62,500ths of a second). The timer is 4 bytes, so the clock
rolls over very 19 hours.

TICK TickGetDiff(TICK a, TICK b)

TickGetDiff calculates the difference between two time values.

unsigned char * SRAMalloc(unsigned char nBytes)

SRAMalloc allocates and returns the address of nBytes of RAM from the heap. Zero is returned if the
memory could not be allocated. (MACDiscardRx() should be used for data payloads returned from
PD_DATA_indication, MCPS_DATA_indication, MLME_BEACON_NOTIFY_indication.)

void SRAMfree(unsigned char * pSRAM)

SRAMfree must be used to free memory previously allocated with SRAMalloc. This includes blocks allocated
by the stack by MLME_SCAN_confirm, which must be freed by the application.

Macros

Note that setting nonvolatile MIB values may not necessarily have any effect until the ZigBee stack is next
initialized. MACAPIInit() must be called before using any of these functions.

pTxData is a buffer where the data payload should be stored prior to a MCPS_DATA_request.

IsMACReady() must return zero prior to filling pTxData with data; if it does not, continue to call
MACAPITasks() until it does.

MACBlockTx() should be called once IsMACReady() returns zero in order to reserve the pTxData.

The application must call MACDiscardRx() to free data payloads returned from PD_DATA_indication,
MCPS_DATA_indication, MLME_BEACON_NOTIFY_indication

SetMACAddress(x), GetMACAddress(x) set and retrieve MIB_MACaddress, where x is a pointer to an 8-
byte buffer in RAM. The device must be reset after setting this value.

IsMACAddressValid() is nonzero if the MAC address has been set, either using the SetMACAddress()
macro or SQTP programming.

TickGet() returns a four-byte timer value counting 1/62500ths of a second. .

TickGetDiff() returns the difference values returned by TickGet() . .

RANDOM_LSB, RANDOM_MSB provide a pseudorandom number generated from the Timer0 clock.

Page 20 10-Apr-07 MAC API DS501-2 FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Development Kit Inventory

The MAP API Development Kit contains:

1. The files required for MPLAB-based applications development:

MAC API.h
MAC API PixC.lib
MAC API PixF.lib
MAC API PixS.lib
MAC API PixLiteC.lib
MAC API PixLiteF.lib
MAC API PixLiteS.lib
MACLink4620.lkr
MACLink2520.lkr

2. This documentation, MAC API DS501.pdf.

3. The files StarLite.c, and Config.c, which are required for the StarLite example application, and
project files for the six different builds PXMC, PXMF, and PXMS.

4. The StarLite documentation, StarLite DS505.pdf.

The MPLAB development environment and C18 compiler must be bought separately from Microchip
Technology Inc (www.microchip.com) or one of its distributors.

Development Support

FlexiPanel Ltd publishes free Sniffer firmware which parses MAC API frames which may prove useful. Please
contact us if you have any comments or suggestions.

Revision History

Version Date Major revisions
10-36-21 05-11-06 Initial release

Please note the following with release 103621051106:

• Security not implemented.

Contact details

FlexiPanel

FlexiPanel Ltd
2 Marshall Street, 3rd
London W1F 9BB, United Kingdom
www.flexipanel.com
email: support@flexipanel.com

