

Page 1 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

FlexiPanel

MailBox API™
Application Program Interface for ZigBee MailBox Protocol

Summary

The MailBox API is designed to be a very simple
programming interface for developers of ZigBee
applications. It may be used for the rapid
application development of ZigBee products with
minimal prior knowledge of ZigBee or radio
communications.

MailBox is designed for interoperability and ease-
of-use. In particular, it offers compatibility with
existing MailBox products and avoids the need to
apply for ZigBee Alliance membership. The
protocol ensures data is received at the destination
error-free and in the sequence in which it was
transmitted, but does not attempt to define the
content of the data. It is the applications
responsibility, however, to know what to do with it
when it arrives.

The MailBox layer communicates using the
MailBox ZigBee profile which is being submitted to
the ZigBee organization for registration. Until
registration is complete, ‘placeholder’ profile IDs
have been used which may be subject to change.

In addition, the Mailbox API provides generic
communications for applications without a
dedicated ZigBee profile, for example:

• application wishing to take advantage of
existing MailBox devices such as serial and
USB adapters

• where communications are to be bridged to
non-ZigBee media such as TCP/IP or
RS485

• where the market size does not merit
development of a dedicated ZigBee profile

A network-wide sleep feature is also provided
which allows a network or parts of the network to
agree to allow all devices to sleep until a later
wakeup time.

The MailBox layer communicates using the
MailBox ZigBee profile which has been submitted
to the ZigBee organization for registration. Until
registration is complete, ‘placeholder’ profile IDs
have been used which may be subject to change.
The profile is public. FlexiPanel Ltd retains the

right to define the profile, but attaches no
conditions or fees for to its adoption and use.

Compatibility

The API is fully compatible with all MailBox
products, including:

- Pixie Gateway
- PixieDARC
- UZBee Gateway (when available)
- COMdongle (when available)

Features

MailBox profile incorporates the following features:

• Integrated Microchip ZigBee stack

• conveyance of arbitrary data payloads in
sequence at up to approx 19.2kbit/s

• addressed or broadcast (bus) messaging

• function-specific functional address system
independent of underlying ZigBee addresses

• payload acknowledgement and failure
management

• network-wide sleep and wakeup

• sleepy end device sleep & wakeup

• application specific messages, e.g. for
modem status signals and application
reflashing

Page 2 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Contents

Summary..1
Compatability ...1
Features ...1
Contents...2
MailBox Overview ..3
Device Types ...4
Functional Clusters ..4
State Machine Architecture................................5
Network Joining..5
Device and Service Discovery5
Data Delivery..5
Sleep Management..6
Custom Messages ...6
MIB Attributes...6
Application ID ...6
Endpoints ...7
Notation, Byte & Bit order7
Symbol Periods ..7
Copy Protection..7
Release notes, version
0B400115103521200906pt................................7
Bibliography ...7
Firmware Development Guide8
Application Development Example9
Function Reference..17
Data Types...17
MailBoxInit() ...17
MailBoxTasks() ..17
Transient MailBox States17

MBS_Idle ..17
MBS_Wait...17
MBS_Error..17

Joining..17
MBS_Join_Request......................................17
MBS_Join_Confirm18
MBS_Permit_Join_Request18
MBS_Permit_Join_Confirm18
MBS_Permit_Join_Indication18
MBS_Leave_Indication19
MBS_Sync_Loss_Indication.........................19

Device Discovery ...19
MBS_Device_Discovery_Request19
MBS_Device_Discovery_Confirm19
MBS_Device_Discovery_Indication19
MBS_Service_Discovery_Request19
MBS_Service_Discovery_Confirm20
MBS_Present_Request................................20
MBS_Present_Confirm.................................21
MBS_Present_Indication..............................21
MBS_Redirect_Request...............................21
MBS_Redirect_Confirm................................21
MBS_Redirect_Indication.............................21

Power Saving ...21
MBS_Device_Sleep_Request21
MBS_Device_Sleep_Confirm.......................22
MBS_Device_Wake_Request22

MBS_Device_Wake_Confirm...................... 22
MBS_Network_Sleep_Request 22
MBS_Network_Sleep_Confirm.................... 22
MBS_Network_Sleep_Indication................. 22

Data Transfer .. 23
MBS_Data_Request.................................... 23
MBS_Data_Confirm..................................... 23
MBS_Data_Indication.................................. 23
MBS_Custom_Request 24
MBS_Custom_Confirm................................ 24
MBS_Custom_Indication 24

Callback Functions.. 24
void PriorityUserInterruptHandler(void) 25
void UserInterruptHandler(void) 25
void ZigBeeHook(void) 25

Utility Functions... 25
MailBox Information Base (MIB) 25
Macros... 26
Development Kit Inventory 27
Development Support 27
Revision History .. 27
Contact details... 27

Page 3 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MailBox Overview

MailBox API is used with the Pixie and Pixie Lite 2.4GHz IEEE 802.15.4 / ZigBee transceiver modules.

The IEEE 804.15.4 protocol provides services for transceiver devices to discover each other and then
exchange packets of data in a reliable, error-free manner. Above it, the ZigBee layer allows multi-hop
communications across mesh networks. At the top, the MailBox layer provides generic data communications
without the need to understand how the lower layers work.

MailBox is designed for interoperability and ease-of-use. In particular, it offers compatibility with existing
MailBox products and avoids the need to apply for ZigBee Alliance membership. The protocol ensures data is
received at the destination error-free and in the sequence in which it was transmitted, but does not attempt to
define the content of the data. It is the applications responsibility, however, to know what to do with it when it
arrives.

The MailBox layer communicates using the MailBox ZigBee profile which is being submitted to the ZigBee
organization for registration. Until registration is complete, ‘placeholder’ profile IDs have been used which
may be subject to change.

The MailBox layer adds two important features to the ZigBee communications protocol. The first is packet
sequencing, which ensures that packets arrive in sequence, without loss or repetition. The second is
functional clusters, which address devices according to the function they are supposed to perform, rather than
their MAC or ZigBee short addresses. In addition, it provides guidelines for network-wide sleep and power
outage recovery, which are not defined by the lower layers.

MailBox

Peripherals &
single-chip APIs

Joining

Discovering
Delivering

Sleeping

Custom messages

Tags

Gateways
Sensors Displays Actuators

Page 4 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Coordinator

Router

End device

Network backbone

End device / parent router

One coordinator per network

Max 25 connections per router
Max 24 connections to coordinator

Max 255 binding table entries

Max 6 routers per parent
No device >5 hops to coordinator

Network rules: (HC-L stack profile)

A ZigBee Network

End devices may sleep independently

Device Types

Several device types are employed in a ZigBee network. The coordinator is the device which dictates
network-wide rules such as operating frequency. There must be one coordinator in a network and it is the first
member of the network. The network is then built by joining new devices on to existing devices in the
network.

Routers are devices which can forward messages on behalf of other devices. They form the basis of the
multi-hop messaging system. Unless the entire network has agreed to sleep simultaneously, routers and the
coordinator shall be always on and listening for messages.

End devices cannot route messages on behalf of other devices, and they cannot have admit new devices into
the network. Fast end devices keep their radios on all the time. Sleepy end devices can spend most of their
time asleep; when they wake, they must check with their parent router to see if there are any messages
waiting for them.

With any ZigBee network, there are rules about how many child devices a router may have, how far a device
may be from the coordinator, etc. These rules are referred to collectively as the stack profile. Devices with
different stack profiles are not compatible. Since MailBox Gateway is intended to piggyback on any type of
ZigBee network, it can be applied to any stack profile. The default implementation is the Home Controls
profile, whose rules are indicated in the figure above.

Functional Clusters

Each device maintains a list of application-defined functional clusters which indicate the services it provides.

ZigBee devices use an 8-byte globally unique address when joining a network. Once joined, they are
assigned a 2-byte address which is unique within the network. Since neither address is under the control of
the application, this doesn’t help the application know who to talk to. Functional clusters help perform this
task.

MailBox devices use two-byte functional clusters to identify themselves according to the functions they
perform. All devices support cluster 0x0000 and they may support any number of other clusters. In addition
to sending a message to a specific device short address, a message may be broadcast to all devices which
support a particular cluster. Function-specific device discovery allows network devices to bind together
without user intervention.

Page 5 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

The interpretation of cluster values 0x0001-0x00FD is application specific. For example, in a sensor network,
all sensors might support clusters 0x0000 and 0x0001. Data gathering gateways might support clusters
0x0000 and 0x0002. A gateway could send a message to all sensors by broadcasting to cluster 0x0001. A
sensor can search for a data gateway using device discovery and then direct MailBox packets directly to it.

It is anticipated that 2-byte clusters will be supported in ZigBee 1.1. At that time, the range of application
specific clusters will be extended to 0x0001-0xFFFD.

Cluster 0xFFFE shall be the Redirect Address signifier. If 0xFFFE is specified as a destination address, the
actual destination shall be that specified by the most recently received Redirect Address message. This
allows reduced function devices such as sensors to be instructed remotely as to where to send their data.

Cluster 0xFFFF signifies a null cluster; messages addressed to the null cluster will be discarded without
transmission.

State Machine Architecture

Most ZigBee MailBox functions are implemented using the function MailBoxTasks(). To perform a specific
action such as joining a network, the MailBoxState variable is set to a request value such as
MBS_Join_Request. MailBoxTasks () must then be called repeatedly until the MailBoxState changes to the
associated confirm value such as MBS_Join_Confirm. On occasions where the MailBox must provide the
application with unprompted information, for example if it received data, it will set the MailBoxState to an
indication value such as MBS_Data_Indication.

Network Joining

A device can’t do much until it has established communication with the network. Therefore after initializing, a
device should attempt to join the network using the MBS_Join_Request message. If this is the first time it has
joined the network, the device which will be its parent should be place in the permit join state using the
MBS_Permit_Join_Request command.

Device and Service Discovery

A variety of mechanisms are provided for working out what other devices are on the network and who to send
messages to. Device discovery (MBS_Device_Discovery_Request) is used to search for devices supporting
specific functional clusters. Service discovery (MBS_Device_Discovery_Request) is used to interrogate a
specific device. Present messages (MBS_Present_Request) announce to other devices that this device is
present on the network. Redirect requests (MBS_Redirect_Request) instruct other devices where to send
their messages.

Data Delivery

Payloads of up to 64 bytes of data can be sent at a time in a packet using MBS_Data_Request. Packets can
be broadcast to all devices supporting a functional cluster, or unicast to a specific short address. They can be
unacknowledged, or acknowledged.

• Unacknowledged. Frame sequence numbers are used to determine if a frame has arrived out of
sequence or has been lost. Loss of sequence is reported to the receiving application but no other
action is taken. No acknowledge is sent to the source. Broadcast communication is permitted.

• Acknowledged. The destination will formally accept a frame before the source transmits the next frame.
Broadcast transmissions are not permitted. If a frame does not reach the destination, it can be repeated,
thus guaranteeing uninterrupted, sequenced data. Broadcast communication is currently not permitted
but it will be in future.

Page 6 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Sleep Management

Two sleep modes are provided. Device sleep (MBS_Device_Sleep_Request) permits sleepy end devices to
sleep at any time. Network sleep (MBS_Network_Sleep_Request) allows the entire network to sleep
simultaneously.

Sleep is entirely under the control of the host. On receipt of a network sleep message, the application can
device when and whether to sleep. A sleepy end device may sleep indefinitely, but if it needs to poll its parent
for messages, it must be woken intermittently.

Three device settings affect sleep behavior:

The PersistenceTime is the length of time that a router will hold a message for a sleeping child.

The PollRate is the frequency with which a sleepy end device will poll its parent for messages while it is
awake. (While asleep, it cannot poll at all.) If PollRate is set to zero, the parent will only be polled on wakeup.

The SleepWakeMode device setting governs the operation of the Sleep/Wake pin. In the default mode
(+DSWR=00 command), the device is placed in sleep mode using the +MSMR command and woken by a
change of state of the Sleep/Wake pin. In this mode, the Sleep/Wake pin is tied to the RxD input so that
sending a character will wake the device. (The character will otherwise be ignored. A null character is
recommended.)

In the alternate Sleep/Wake pin mode (+DSWR=01 command), the device will sleep when the Sleep/Wake
pin is high and wake when the pin is low.

In both modes, the RTS pin will be high during sleep and during waking. When waking is complete, RTS will
go low and a +DRYI message will be generated.

Custom Messages

128 custom messages (MBS_Custom_Request) are available for application specific use.

MIB Attributes

Various API variables may be set to control MailBox behavior. These are collectively called MailBox
Information Base (MIB) attributes and may be set with the +DSxR command.

Application ID

The use of functional clusters alone does not allow for the fact that two MailBox applications may need to
coexist on a network. Specifically, one manufacturer may associate different meanings to different clusters.

To allow for this, a 4-byte application ID is associated with each manufacturer’s interpretation of clusters. This
application ID is included with all data transactions and is also available for direct querying to verify a device
prior to unicast transmission. It also allows manufacturer specific messages to be transmitted.

In order for application IDs to be unique, FlexiPanel will allocate on request a 3-byte MailBox Unique Identifier
(MUI). This is free of charge.

Application IDs shall be allocated as follows:

 Bytes 0-2: Manufacturer’s MUI number
 Byte 3: Assigned by manufacturer

The ‘free-for-all’ MUI 00:00:00 may be used by any application that can ensure that it is the only MailBox
application on the network.

Page 7 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Endpoints

ZigBee endpoints allow several applications to share one ZigBee radio. The MailBox protocol uses one
ZigBee endpoint. By default it is 0x10, but this may be changed for the convenience of other applications.
This may be any endpoint in the allowed range 0x01-0xF0. The same endpoint must be used for all devices
employing that Application ID.

Notation, Byte & Bit order

All numbers in this documentation are in decimal unless prefixed with 0x, in which case they are hexadecimal.
Index counting starts at zero, so the first byte of a message is byte zero.

Multi-byte data is transmitted least-significant byte first (‘little-endian’), as is standard in the ZigBee
specification.

Symbol Periods

Several time periods are expressed in units of Symbol Periods. A symbol period is 1/62,500 second.
0x10000 symbol periods equates to just over one second.

Copy Protection

To protect against copying, if the MailBox API firmware is run on any hardware except FlexiPanel Pixie and
Pixie Lite products, it will cease to function after approximately two minutes.

Release notes, version 0B400115103521061006pt

In this release, security is not supported. MailBox profile ID 0xC1EE has been assigned

Bibliography

IEEE 802.15.4 specification, downloadable from www.ieee.org.

The MailBox Profile for ZigBee, downloadable from www.flexipanel.org.

ZigBee for Applications Developers, white paper downloadable from www.flexipanel.com.

ZigBee Specification, downloadable from www.zigbee.org.

Page 8 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Firmware Development Guide

The Microchip Technology MPLAB development environment and C18 compiler will be needed to
develop MailBox API applications. A debugger such as the Microchip Technology ICD2 is
recommended. Please refer to Microchip Technology documentation for full details on how to
develop applications for PIC microprocessors.

A MailBox application project include the following files:

MailBox.h Header file for MailBox library functions and data.

MailBoxAPI-HSSD.lib MailBox library. HSSD signifies the different library versions: H
indicates hardware, being Pixie (H) or Pixie Lite (L). SS indicates
stack profile, for example Home Controls (HC). D indicates device
type, being Coordinator (C), Router (R), Fast End Device (F) or
Sleepy End Device (S).

MbxLinkxxxx.lkr Required linker script. XXXX is 4620 for Pixie and 2520 for Pixie
Lite.

You will also need to provide code for your main application program and also specify the
configuration bits you require. The following memory model settings should be specified:

- Small code model
- Large data model
- Single-bank model

The oscillator configuration must be set for a 16MHz clock. If using the internal oscillator block, set
the oscillator setting to Internal RC and include the following lines in your startup code:

 OSCCONbits.IRCF1 = 1; // changes to <IDCF2:IDCF0>=110 = 4MHz
 OSCTUNEbits.PLLEN = 1; // PLL 4MHz -> 16MHz
 Delay1KTCYx(100); // allow 25ms for clock to settle

Page 9 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Application Development Example

The following example source code is for the PixieDARC data acquisition and remote control device.
Refer to its separate documentation if you are unfamiliar with it. It accepts instructions via the
MailBox Profile in order to set digital outputs and also to read digital and analog inputs. Six
different sets of project files are in the development kit, one for each of the different possible builds:

PXDC – Pixie DARC Coordinator
PXDR – Pixie DARC Router
PXDF – Pixie DARC Fast End Device
PXDS – Pixie DARC Sleepy End Device
PLDF – Pixie Lite DARC Fast End Device
PLDS – Pixie Lite DARC Sleepy End Device

The file Config.c specifies the configuration bits required. The file PixieDARC.c contains the
application program. It has the following basic structure:

Initialize

MailBoxTasks()

Process indication
and confirm

messages from
MailBoxTasks()

Non-MailBox
application tasks

Is
MailBox

Idle?

Perform any tasks
that require making a

MailBox request

Fatal
error?

Y

N

N

Y

Sleep a while to save
power if needed

Page 10 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

The PixieDARC.c code is reproduced below with annotations:

//**
// FileName: Pixie DARC.c
// Sample Mailbox application - Data Acquisition and Remote control
//
//***

// Basic process in this application:
// 1. If I'm started up with the join button down, erase network data
// 2. If I'm not joined to anything, attempt to join
// 3. If join fails, or any errors occur, reset
// 4. If join succeeds, send present announcement
// 5. If join button pressed, permit joining (routers & coordinator only)
// 6. On receipt of instruction from another device, process and respond to that device

//***

// Compile switches - you can either uncomment here or in the build settings
//#define DARC_COORDINATOR
//#define DARC_ROUTER
//#define DARC_FAST_END
//#define DARC_SLEEPY_END

//#define PIXIE
//#define PIXIE_LITE

#if (!defined(PIXIE) && !defined(PIXIE_LITE))
#error "PIXIE_xxx must be defined"
#endif

#if (!defined(DARC_COORDINATOR) && !defined(DARC_ROUTER) && !defined(DARC_FAST_END) &&
!defined(DARC_SLEEPY_END))
#error "DARC_xxx must be defined"
#endif

//***

// includes

#include <p18cxxx.h>

// MailBox definitions
#include "MailBox.h"
#include <delays.h> // for delay functions
#include <string.h> // for memcpy-type functions

//***

// DARC commands
#define SET_IO_VAL 0x01
#define GET_IO_VAL 0x02
#define GET_AN_VAL 0x03
#define SET_AN_CHANS 0x04
#define COMMAND_STREAM 0x05

#define IO_RA0 0x00
#define IO_RA1 0x01
#define IO_RA2 0x02
#define IO_RA3 0x03
#define IO_RB4 0x14
#define IO_RB5 0x15
#define IO_RB6 0x16
#define IO_RC6 0x26
#define IO_RC7 0x27
#define IO_RE0 0x40
#define IO_RE1 0x41
#define IO_RE2 0x42
#define IO_AN0 0x80
#define IO_AN1 0x81
#define IO_AN2 0x82
#define IO_AN3 0x83
#define IO_AN5 0xC0
#define IO_AN6 0xC1
#define IO_AN7 0xC2

#define DARC_STATUS_SUCCESS 0x00
#define DARC_SYNTAX_ERROR 0x01
#define DARC_STATUS_OUT_OF_RANGE 0x02
#define DARC_STATUS_IO_NOT_POSSIBLE 0x03

//**/
// DARC function prototypes & static variables

void SetIOVal(BYTE IOval);
void GetIOVal(BYTE IOval);
void GetANVal(BYTE IOval);
void SetANChannels(void);
void SetStream(void);

BYTE NumANchannels = 0;
BYTE StreamChannel = 0;
BYTE StreamRate = 0;

Device type settings must match
the MailBox library you link to.

Definitions relating to the DARC
communications messages.

Declarations relating to DARC
functions.

Page 11 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

#ifdef DARC_SLEEPY_END
BYTE StreamCountDown ;
#else
TICK LastStream;
#endif

//**/
// semaphores

typedef union _DARC_FLAGS
{
 WORD Val;
 struct _Bits
 {
 BYTE ParseError : 1;
 BYTE Joined : 1;
 BYTE PresenceAnnounced : 1;
 BYTE GoToSleep : 1;
 BYTE Erase : 1;
 BYTE ProcessInboundMessage : 1;
 BYTE SendStreamValue : 1;
 BYTE StayAwakeToStream : 1;
 BYTE Announce: 1;
 } Bits;
} DARC_FLAGS;

DARC_FLAGS DARCFlags;

//--

// Cache for incoming data
#define MAX_CMD_LEN 8
BYTE MessageCache[MAX_CMD_LEN];
BYTE MessageLen;
WORD_VAL ReplyAddress;

//--

// Nonvolatile variables. Note that writing nonvolatile memory requires erasing a block
// of memory 0x40 bytes long, so we will ensure sure the rest of the block is not program
// memory by declaring filler before and after. This is very ineccifient, there are better ways
to do it

rom BYTE DARCfiller1[0x40];

// Check MAC address is set.
rom BYTE nvMACset = 0; // Nonzero if MAC address has been set

rom BYTE DARCfiller2[0x40];

//--

// UART is used for setting MAC address

#define CLOCK_FREQ 16000000
#define BAUD_RATE 19200
#define USART_USE_BRGH_HIGH
#if defined(USART_USE_BRGH_LOW)
 #define SPBRG_VAL (((CLOCK_FREQ/BAUD_RATE)/64) - 1)
#else
 #define SPBRG_VAL (((CLOCK_FREQ/BAUD_RATE)/16) - 1)
#endif

#if SPBRG_VAL > 255
 #error "Calculated SPBRG value is out of range for currnet CLOCK_FREQ."
#endif

#if defined(USART_USE_BRGH_HIGH)
#define TXSTA_VAL 0x24
#else
#define TXSTA_VAL 0x20
#endif

//--

// I/O pin definitions

#define STATUS_LED PORTAbits.RA4
#define TRIS_STATUS_LED TRISAbits.TRISA4

 #define BIND_SWITCH PORTBbits.RB7
 #define TRIS_BIND_SWITCH TRISBbits.TRISB7

//**/

void PutROMString(ROM char* str);
void NetworkFailed(void);

// main program

void main(void)
{
 // initialize I/O.
 DARCFlags.Val = 0x0000;
 ADCON1 = 0x0F; // Make PORTA digital I/O.
 TRIS_BIND_SWITCH = 1; // Bind switch is input

Semaphore values. These record
the state of the device and are used

to note jobs that require doing
when the MailBox state is idle.

The UART is used only to initialize
the MAC address.

Page 12 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

 TRIS_STATUS_LED = 0; // Status LED is output
 STATUS_LED = 1; // Status LED is on until join is successful

 // Test to see if Join was presed on power-up, indicating a request for erase
 if (!BIND_SWITCH)
 DARCFlags.Bits.Erase = 1;

 // set up internal oscillator for 16MHz operation if required
#ifdef OSC_INTERNAL
 OSCCONbits.IRCF1 = 1; // assuming <IDCF2:IDCF0>=100 on startup, changes to
<IDCF2:IDCF0>=110 = 4MHz
 OSCTUNEbits.PLLEN = 1; // PLL 4MHz -> 16MHz
 Delay1KTCYx(100); // allow 25ms for clock to settle
#endif

 // enable watchdog timer
 ClrWdt();
 WDTCONbits.SWDTEN = 1;

 // Initialize mailbox
 MailBoxInit();

 // If MAC not set, prompt and ask for it now
 if (!nvMACset)
 {
 BYTE MACAddr[8];
 BYTE* pMACAddr = &MACAddr[8];
 BYTE cTemp;

 // set up uart
 TXSTA = TXSTA_VAL;
 RCSTA = 0x90;
 SPBRG = SPBRG_VAL;

 // ask for MAC address in hex and parse it. Note there is not very much error correction
 PutROMString((rom char *) "MAC->");
 do {
 pMACAddr--;
 while (PIR1bits.RCIF==0) {ClrWdt();}
 cTemp = RCREG - '0';
 if (cTemp > 0x09) cTemp -= 0x07; // A-F
 if (cTemp > 0x0F) cTemp -= 0x20; // a-f
 *pMACAddr = cTemp << 4;
 while (PIR1bits.RCIF==0) {ClrWdt();}
 cTemp = RCREG - '0';
 if (cTemp > 0x09) cTemp -= 0x07; // A-F
 if (cTemp > 0x0F) cTemp -= 0x20; // a-f
 *pMACAddr += cTemp ;
 }
 while (pMACAddr > MACAddr);

 // Write nonvolatile data
 PutMACAddress(pMACAddr);
 cTemp = 1;
 NVMWrite(&nvMACset, &cTemp, 1);

 // Confirm and reset
 PutROMString((rom char *) "\r\nOK\r\n");
 Reset();
 }

 while (1)
 {
 // perform mailbox tasks
 ClrWdt();
 MailBoxTasks();

 // look at all possible return states and decide what to do
 switch (MailBoxState)
 {
 // Some confirms return with an error condition which should be checked for error
 case MBS_Data_Confirm:
 if (pMailBoxParam->MBS_Data_Confirm.Status != 0) NetworkFailed();
#ifdef DARC_SLEEPY_END
 if (DARCFlags.Bits.StayAwakeToStream) DARCFlags.Bits.StayAwakeToStream = 0;
#endif
 break;

 case MBS_Permit_Join_Confirm:
 // check join was success
 if (pMailBoxParam->MBS_Data_Confirm.Status != 0) NetworkFailed();
 break;

 // If an error happens, reset and rejoin
 case MBS_Leave_Indication:
 case MBS_Error:
 case MBS_Sync_Loss_Indication:
 NetworkFailed(); // does not return

 case MBS_Join_Confirm:
 // check join was success
 if (pMailBoxParam->MBS_Data_Confirm.Status != 0) NetworkFailed();

 // Join succeeded
 DARCFlags.Bits.Joined = 1;
 DARCFlags.Bits.Announce = 1;

Set the oscillator up on
initialization.

Initialize MailBox.

Ensure the MAC
address is set.

Main program loop, with
MailBoxTasks() at the top.

Check no errors reported.

If we successfully joined,
announce our presence to

all MailBox devices.

Page 13 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

 break;

 case MBS_Present_Confirm:
 // check was success
 if (pMailBoxParam->MBS_Data_Confirm.Status != 0) NetworkFailed();
 DARCFlags.Bits.PresenceAnnounced = 1;
 STATUS_LED = 0; // Initialization is complete
 break;

 case MBS_Permit_Join_Indication:
 // a device joined, clear the LED to indicate it.
 if (pMailBoxParam->MBS_Data_Confirm.Status != 0) NetworkFailed();
 STATUS_LED = 0;
 break;

 case MBS_Data_Indication:
 // Data is acceptable unless we have received a more recent packet or
 // it came with a serious health warning
 if (pMailBoxParam->MBS_Data_Indication.Status!=DATA_STATUS_SEQUENCE_ERROR &&
 pMailBoxParam->MBS_Data_Indication.Status!=DATA_STATUS_LATE_FRAME &&
 pMailBoxParam->MBS_Data_Indication.DataPayloadLen <= MAX_CMD_LEN)
 {
 // we received a message so remember it and who it was from
 ReplyAddress = pMailBoxParam->MBS_Data_Indication.SourceAddr;
 MessageLen = pMailBoxParam->MBS_Data_Indication.DataPayloadLen;
 memcpy(MessageCache, (void*) pMailBoxParam->MBS_Data_Indication.pRxData,
MessageLen);
 DARCFlags.Bits.ProcessInboundMessage = 1;
 }
 break;

#ifdef DARC_SLEEPY_END
 case MBS_Device_Sleep_Confirm:
 // Mailbox is happy to sleep
 if (pMailBoxParam->MBS_Data_Confirm.Status == 0)
 {
 DARCFlags.Bits.GoToSleep = 1;
 }
 break;
#endif

 // no action required for other exit conditions
 default: break;
 }

 // Pump the mailbox tasks until idle
 if (MailBoxState!=MBS_Idle) continue;

 // Any application tasks that do need to modify MailBoxState from here on

 // If I haven't joined yet, then join
 if (!DARCFlags.Bits.Joined)
 {
 pMailBoxParam->MBS_Join_Request.Flags.Erase = (DARCFlags.Bits.Erase ? 0x01 : 0x00);
 MailBoxState = MBS_Join_Request;
 continue;
 }

 // If I've joined but not announced presence, do so now
 if (DARCFlags.Bits.Announce)
 {
 DARCFlags.Bits.Announce = 0;
 MailBoxState = MBS_Present_Request;
 pMailBoxParam->MBS_Present_Request.Flags.Broadcast = 1;
 pMailBoxParam->MBS_Present_Request.Destination.Val = 0x0000; // Broadcast to all
nodes
 continue;
 }

#ifdef DARC_SLEEPY_END
 // If ready to sleep, then sleep
 if (DARCFlags.Bits.GoToSleep)
 {
 DARCFlags.Bits.GoToSleep = 0;

 // Perform any pre-sleep shutdown here - set to wake up on watchdog timeout
 ClrWdt();

 // sleep
 Sleep();
 Nop();

 // Perform any post-wake operations - clear watchdog timer
 ClrWdt();

 // restart MailBox stack

 MailBoxState = MBS_Device_Wake_Request;

 // stream data if needed
 if (StreamRate)
 {
 StreamCountDown--;
 if (!StreamCountDown)
 {
 DARCFlags.Bits.SendStreamValue = 1;

If a message is received,
save it and process it

when idle.

If the MailBox allows us to
sleep, start sleeping.

Non-Mailbox application tasks
can be executed here, then
return to MailBoxTasks() if

MailBox is not Idle.

Join network

Announce presence

Sleep

Stream Data on wakeup

Page 14 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

 StreamCountDown = StreamRate;
 }
 }
 continue;
 }
#endif

 // If permit join pressed, permit joining
#if (defined(DARC_COORDINATOR) || defined(DARC_COORDINATOR))
 // Note, this command should only be used for routers and coordinator only
 if (STATUS_LED==0 && BIND_SWITCH==0) // If LED does not indicate already permitting
joining and switch is on (active low)
 {
 // permit join indefinitely; no cancel permit join
 // code is provided if it needs to be cancelled, reset
 pMailBoxParam->MBS_Permit_Join_Request.PermitDuration = 0xFF;
 MailBoxState = MBS_Permit_Join_Request;
 STATUS_LED = 1;
 continue;
 }
#endif

 // process a command, if one received
 if (DARCFlags.Bits.ProcessInboundMessage)
 {
 DARCFlags.Bits.ProcessInboundMessage = 0;

 // set up default response
 pTxData[0] = DARC_SYNTAX_ERROR;
 pMailBoxParam->MBS_Data_Request.DataPayloadLen = 0x01;

 switch (MessageCache[0])
 {
 case SET_IO_VAL:
 if (MessageLen==0x03) SetIOVal(MessageCache[1]);
 break;
 case GET_IO_VAL:
 if (MessageLen==0x02) GetIOVal(MessageCache[1]);
 break;
 case GET_AN_VAL:
 if (MessageLen==0x02) GetANVal(MessageCache[1]);
 break;
 case SET_AN_CHANS:
 if (MessageLen==0x02) SetANChannels();
 break;
 case COMMAND_STREAM:
 if (MessageLen==0x03) SetStream();
 break;
 }

 // compile reply
 pMailBoxParam->MBS_Data_Request.Flags.IsBroadcast = 0;
 pMailBoxParam->MBS_Data_Request.Flags.IsAcknowledge = 0;
 pMailBoxParam->MBS_Data_Request.Flags.IsRetry = 0;
 pMailBoxParam->MBS_Data_Request.Destination.Val = ReplyAddress.Val;
 MailBoxState = MBS_Data_Request;
 continue;
 }

 // Streaming, for non-sleepy devices
#ifndef DARC_SLEEPY_END
 if (StreamRate)
 {
 TICK tNow = TickGet();
 if (TickGetDiff(tNow, LastStream) > (((DWORD) StreamRate) << 16))
 {
 LastStream = tNow;
 DARCFlags.Bits.SendStreamValue = 1;
 }
 }
#endif

 if (DARCFlags.Bits.SendStreamValue)
 {
 DARCFlags.Bits.SendStreamValue = 0;
 DARCFlags.Bits.StayAwakeToStream = 1;

 // compile reply
 if (StreamChannel>=IO_AN0)
 GetANVal(StreamChannel);
 else
 GetIOVal(StreamChannel);
 pMailBoxParam->MBS_Data_Request.Flags.IsBroadcast = 0;
 pMailBoxParam->MBS_Data_Request.Flags.IsAcknowledge = 0;
 pMailBoxParam->MBS_Data_Request.Flags.IsRetry = 0;
 pMailBoxParam->MBS_Data_Request.Destination.Val = ReplyAddress.Val;
 MailBoxState = MBS_Data_Request;
 }

 // if I got this far and I'm sleepy, joined, PresenceAnnounced, and not busy, I can start
sleeping
#if defined(DARC_SLEEPY_END)
 if (!DARCFlags.Bits.StayAwakeToStream && DARCFlags.Bits.PresenceAnnounced)
 MailBoxState = MBS_Device_Sleep_Request;
#endif

Permit joining if Bind
pressed and device is
Coordinator or Router

If a remote device has
sent a command, process
it and prepare a response

Stream Data if not sleepy

If sleepy and all tasks
done, ask MailBox if we

can sleep

Set and Get functions can
be seen in the

development source code

Page 15 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

 } // end of while (1) loop
}

/***
User Interrupt Handlers

The stack uses some interrupts at low priority for its internal processing. Once it is done
checking for its interrupts, the stack calls UserInterruptHandler function to allow for any
additional interrupt processing. Interrupts should not be disabled unless the sleep state
has been entered.

PriorityUserInterruptHandler must be for very fast, defined duration operations only

***/

#pragma interrupt PriorityUserInterruptHandler
void PriorityUserInterruptHandler(void)
{
 // Only very fast functions here
}

void UserInterruptHandler(void)
{
 // Slower functions here
}

/***
ZigBeeHook

This function allows a sneak look at the state of the ZigBee stack.
If you care to investigate the ZigBee stack source, you can declare variables as extern
and look at them. DO NOT modify them - that would invalidate stack compliance

**/

void ZigBeeHook(void)
{
}

/***
NetworkFailed

Works out what to do if cannot be sure we're still connected to the network
This implementation just waits a second, then resets. Consideration should
be given to whether a longer delay should be implemented for power saving

**/

void NetworkFailed(void)
{
 Sleep();
 Nop();
 Reset();
}

High priority interrupt

Low priority interrupt

You can peek at the stack,
but don’t touch!

Recovery-on-error
function

Page 16 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Function Reference

Data Types

A variety of data structures are declared in
MailBox.h. Most have rather obvious functions
and will not be documented in detail – refer to
MailBox.h for further information. The
MailBoxParams structure is extensive and is
detailed in the MailBoxTasks() section.

MailBoxInit()

MailBoxInit() initializes the MailBox. It will enable
high and low priority interrupts. The function
should be called once during initialization.

MailBoxTasks()

This section describes the function of the MailBox
state machine based on the MailBoxState on entry
to and on exit from MailBoxTasks.

Related information is stored in the
MailBoxParams structure. For example, the Erase
variable referred to in MBS_Join_Request below
actually refers to the variable
MailBoxParams.MBSInitialize_request.Erase.

All MailBoxParams fields named Status will be
0x00 to indicate success; otherwise the status
code will be equal to a NWK layer status code
(refer to ZigBee 1.0 specification section 2.1).

The following limitations apply as to when certain
primitives may be specified by the application:

• An MBS_Join_Request operation must
complete successfully before any other
request is made.

• No variable used by the MailBox layer may
be modified from an interrupt service routine.

• The MailBox state may only be changed by
the application if the current state is
MBS_Idle.

Transient MailBox States

MBS_Idle

Parameters: None

Meaning On Exit: MailBox is free to accept
requests.

Action On Entry: No action taken other than to run
background ZigBee stack tasks.

MBS_Wait

Parameters: None

Meaning On Exit: MailBox is processing a request.

Action On Entry: Background ZigBee stack tasks
are run to see if operations have completed.

MBS_Error

Parameters:

 BYTE ErrorNo

Meaning On Exit: MailBox met with a fatal error.
ErrorNo indicates the nature of the error as
follows:

ErrorNo Description
0x01 MailBoxState was not idle when value was

changed.
0x02 Ran out of memory.
0x03 Operation not permitted prior to joining / forming

network
≥0x80 Unexpected state; contact FlexiPanel quoting

error number.

Action On Entry: MailBox immediately returns
without changing MailBoxState.

Joining

MBS_Join_Request

Parameters:

 BIT Flags.Erase

Meaning On Exit. Cannot occur.

Action On Entry: Mailbox will (re)initialize. If
Erase is nonzero, all ZigBee network information
will be erased.

On a coordinator, this command will start a
network. If it has never started a network before,
or Erase was true, it will be a new network.
Otherwise it will restart an existing network.

On routers and end devices, if it has never before
joined a network or Erase was true, it will then
attempt to join any network. A router or
coordinator on the network it is supposed to join
must be in range and in the PermitJoin state to
allow the new device to join.

Page 17 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Otherwise, if it was previously a member of a
network, it will rejoin the network and no special
join permission will be required.

Example usage:

 MailBoxState = MBS_Join_Request;
pMailBoxParam->MBS_Join_Request.Erase = 0;
if (bDoFactoryRset)
 pMailBoxParam->MBS_Join_Request.Erase = 1;

MBS_Join_Confirm

Parameters:

 BYTE Status
 SHORT_ADDR ShortAddress

Meaning On Exit. Initialization has completed.

If Status is 0x00, initialization was successful. If
the device was already a member of a network, it
has rejoined the network. If it was not a member,
or network information was erased, the device has
joined a new network. ShortAddress will contain
the short address allocated to this device.

If Status is nonzero, initialization failed because
the device could not join / rejoin a network.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Example usage:

 if (MailBoxState == MBS_Join_Confirm)
 {
 // Sleep until a human intervenes to reset
 if (pMailBoxParam->MBS_Join_Confirm.Status)
 Sleep();
 }

MBS_Permit_Join_Request

Parameters:

 BYTE PermitDuration

Meaning On Exit. Cannot occur.

Action On Entry: Sets permissions for allowing
new devices to join the network via this device.
This action is only permitted for routers and
coordinators.

If PermitDuration is 0x00, devices are not allowed
to join the network via this device.

If PermitDuration is 0xFF, devices will be allowed
to join the network via this device until otherwise
instructed.

If PermitDuration is any other value, devices will
be allowed to join the network via this device for
then next PermitDuration seconds. No indication
will be given when this duration has elapsed.

Example usage:

 if (bPermitJoinButtonPressed)
 {
 // Device joined; disable permit join
 MailBoxState = MBS_Permit_Join_Request;

 pMailBoxParam->MBS_Permit_Join_Request.
 PermitDuration = 0xFF;

 }

MBS_Permit_Join_Confirm

Parameters:

 BYTE Status

Meaning On Exit. Permit join instruction has
completed processing.

If Status is 0x00, processing was successful.

If Status is nonzero, processing was not
successful.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Permit_Join_Indication

Parameters:

 SHORT_ADDR ShortAddress
 LONG_ADDR ExtendedAddress

Meaning On Exit. A device joined the network via
this device. There is no explicit indication as to
whether this is a rejoin of an existing member or a
new member joining.

ShortAddress will contain the short address of the
device that joined.

ExtendedAddress will contain the long address of
the device that joined.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Example usage:

 // Permit joining
 MailBoxState = MBS_Permit_Join_Request;

pMailBoxParam->MBS_Permit_Join_Request.
 PermitDuration = 0x00;

Page 18 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MBS_Leave_Indication

Parameters: None

Meaning On Exit. This device was instructed to
leave the network. This event could only have
been initiated by a non-MailBox member of the
ZigBee network.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Sync_Loss_Indication

Parameters: None

Meaning On Exit. This device did not receive a
reply from its parent during a poll operation.
Polling will have been tried four times; the
application should assume that the parent is no
longer operating, on this frequency at least. The
recommended course of action is to sleep a while
to conserve power, then reset and then attempting
to rejoin the network.

 Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Device Discovery

MBS_Device_Discovery_Request

Parameters:

 WORD_VAL FuncID

Meaning On Exit. Cannot occur.

Action On Entry: Initiates a scan for other MailBox
devices with the same Functional ID specified by
FuncID.

Example usage:

 MailBoxState = MBS_Device_Discovery_Request;
pMailBoxParam->MBS_Device_Discovery_Request.
 FuncID.Val = 0x0000; // All devices

MBS_Device_Discovery_Confirm

Parameters:

 BYTE Status

Meaning On Exit. Device discovery has completed
processing. Device discovery will complete after a
period of two MIB_MailBoxTimeout periods.

If Status is 0x00, processing was successful.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Device_Discovery_Indication

Parameters:

 WORD_VAL SourceAddr

Meaning On Exit. A device was discovered
conforming to the discovery request.

SourceAddr will contain the short address of the
discovered device. It will support the Functional
Address specified. However, it is not guaranteed
to have the same Application ID.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Example usage:

 if (MailBoxState==MBS_Device_Discovery_Indication)
 {
 WORD_VAL Discovered_Device =
 pMailBoxParam->MBS_Device_Discovery_Indication.
 SourceAddr.Val;
 }

Example usage:

 if (MailBoxState==MBS_Device_Discovery_Indication)
 {
 WORD_VAL Discovered_Device =
 pMailBoxParam->MBS_Device_Discovery_Indication.
 SourceAddr.Val;
 }

MBS_Service_Discovery_Request

Parameters:

 WORD_VAL Destination
 WORD_VAL InfoType
 BYTE DataPayloadLen
 BYTE* pRxData

Meaning On Exit. Cannot occur.

Action On Entry: Initiates a request for information
from the ZigBee device with address Destination.

InfoType indicates the information required. If
equal to 0x0080, the information requested is the
device’s application ID. DataPayloadLen should
be zero so that pDataPayload is be ignored.

If InfoType is anything other than 0x0080, the
value shall be interpreted as a ZigBee Device
Object (ZDO) cluster and the data will be sent to
the ZDO on the remote device. For further
information refer to the ZigBee specification. Note
that for ZDO requests, Destination does not have
to be a MailBox device.

Page 19 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

If supplementary information is required for a ZDO
request, the buffer pTxZDO shall be filled with the
supplementary information and DataPayloadLen
shall indicate its length. The buffer is a fixed
memory location defined by a macro and memory
does not need to be allocated. It must be filled at
the time the MailBoxState is set to
MBS_Service_Discovery_Request.

If supplementary information is not required,
DataPayloadLen shall be zero.

The ZDO services currently supported by MailBox
devices are shown below. Refer to the ZigBee
specification for full details of their actual function
and request / confirm payloads.

Name Description Info
Requested

IEEE_ADDR_req Get MAC address &
child device info

0x0001

NODE_DESC_req Get node descriptor 0x0002
POWER_DESC_req Get power descriptor 0x0003
SIMPLE_DESC_req Get simple descriptor 0x0004
ACTIVE_EP_req Get active endpoint list 0x0005

Example usage (Application ID):

 MailBoxState = MBS_Service_Discovery_Request;
pMailBoxParam->MBS_Service_Discovery_Request.
 Destination.Val = 0x0001;
pMailBoxParam->MBS_Service_Discovery_Request.
 InfoType.Val = 0x0080;

Example usage (ZDO request):

 MailBoxState = MBS_Service_Discovery_Request;
 pMailBoxParam->MBS_Service_Discovery_Request.
 Destination.Val = 0x0001;
 pMailBoxParam->MBS_Service_Discovery_Request.
 InfoType.Val = IEEE_ADDR_req;
 pMailBoxParam->MBS_Service_Discovery_Request.
 DataPayloadLen = 4;
 pTxZDO[0] = 0x01; // Destination address
 pTxZDO[1] = 0x00;
 pTxZDO[2] = 0x00; // Request type
 pTxZDO[3] = 0x00; // Start index

MBS_Service_Discovery_Confirm

Parameters (Application ID):

 BYTE Status
 WORD_VAL InfoType
 DWORD_VAL ApplicationID

Parameters (ZDO services):

 BYTE Status
 WORD_VAL InfoType
 BYTE DataPayloadLen
 BYTE* pRxData

Meaning On Exit. A device information request
has completed processing.

If Status is 0x00, processing was successful and
InfoType will indicate the information requested.

If InfoType is 0x0080, the ApplicationID shall
contain the remote device’s Application ID.

If InfoType is anything other than 0x0080, pRxData
shall be interpreted as a ZigBee Device Object
(ZDO) response. For further information refer to
the ZigBee specification. DataPayloadLen shall
indicate its length. The data in pRxData shall only
be valid until MailBoxTasks() is next called.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Example usage (Application ID):

if (MailBoxState == MBS_Service_Discovery_Confirm)
{
if (!pMailBoxParam->
 MBS_Service_Discovery_Confirm_AppId.Status)

 {
if (pMailBoxParam->
 MBS_Service_Discovery_Confirm_AppId.
 InfoType.Val==0x0080)

 {
 // Application ID is in:
 pMailBoxParam->
 MBS_Service_Discovery_Confirm_AppId.
 ApplicationID
 }
 }
}

Example usage (ZDO):

if (MailBoxState == MBS_Service_Discovery_Confirm)
{
if (!pMailBoxParam->
 MBS_Service_Discovery_Confirm_AppId.Status)

 {
if (pMailBoxParam->
 MBS_Service_Discovery_Confirm_AppId.
 InfoType.Val!=0x0080)

 {
 // ZDO response is in:
 pMailBoxParam->
 MBS_Service_Discovery_Confirm_ZDO.pRxData

 // Length is in:
 pMailBoxParam->
 MBS_Service_Discovery_Confirm_ZDO.
 DataPayloadLen
 }
 }
}

MBS_Present_Request

Parameters:

 BIT Flags.Broadcast
 WORD_VAL Destination

Meaning On Exit. Cannot occur.

Action On Entry: Sends a message to the
device(s) specified by Destination, announcing its
presence. If Broadcast is true, Destination is
interpreted to be a Functional Cluster and the
message is broadcast. If Broadcast is false,
Destination is interpreted to be a short address
and the message is unicast.

Page 20 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

MBS_Present_Confirm

Parameters:

 BYTE Status

Meaning On Exit. Confirms that an
MBS_Present_Request operation has completed.

If Status is 0x00, processing was successful.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Present_Indication

Parameters:

 WORD_VAL SourceAddr
 BYTE NumCluster
 WORD_VAL ClusterList[]

Meaning On Exit. A device announced it was
present.

SourceAddr will contain the short address of the
originating device. It will have the correct
Application ID.

ClusterList will list the functional clusters that the
device supports. (The mandatory cluster 0x0000
may or may not be in the list.) NumCluster will
equal the number of clusters in ClusterList. Any
null clusters (0xFFFF) in the list shall be ignored.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Redirect_Request

Parameters:

 BIT Flags.Broadcast
 WORD_VAL Destination
 BIT Redirect.IsBroadcast
 BIT Redirect.IsAdknowledge
 WORD_VAL AddrOrClust

Meaning On Exit. Cannot occur.

Action On Entry: Sends a message to the
device(s) specified by Destination, requesting that
they change their redirect address. If Broadcast is
true, Destination is interpreted to be a Functional
Cluster and the message is broadcast. If
Broadcast is false, Destination is interpreted to be
a short address and the message is unicast.

The message instructs the destination mailbox
layer to set its redirect address to AddrOrClust,
which shall be interpreted as a short address if

Redir.IsBroadcast is false, or as a broadcast
cluster otherwise. Transmissions using the
redirect address shall be acknowledged if
Redir.IsAcknowledge is true.

MBS_Redirect_Confirm

Parameters:

 BYTE Status

Meaning On Exit. Confirms that an
MBS_Redirect_Request operation has completed.

If Status is 0x00, processing was successful.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Redirect_Indication

Parameters: None.

Meaning On Exit. The redirect address was
changed by another device.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Power Saving

MBS_Device_Sleep_Request

Parameters: None.

Meaning On Exit. Cannot occur.

Action On Entry: Mailbox will begin to shut down
the ZigBee stack.

Note: Only sleepy end devices should be permitted
to sleep unless a network sleep command was
received. An end device’s parent can cache
messages for it during sleep, but it must wake up
to retrieve the message. There is no mechanism
for the router to wake up the end device when
there has a message for it.

MBS_Device_Sleep_Confirm

Parameters:

 BYTE Status

Meaning On Exit. ZigBee stack has shut down.

If Status is 0x00, device may sleep. Currently, it
cannot return nonzero.

Page 21 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Parameters:

 BIT Flags.Broadcast
 WORD_VAL Destination

MBS_Device_Wake_Request

Parameters: None.

Meaning On Exit. Cannot occur.

Action On Entry: MailBox will start to resume the
ZigBee stack.

MBS_Device_Wake_Confirm

Parameters:

 BYTE Status

Meaning On Exit. The operation to resume the
ZigBee stack has completed.

If Status is 0x00, the stack resumed successfully
and the device may resume normal operation.

Action On Entry: Ignored; state returned to
MBS_Idle.

MBS_Network_Sleep_Request

Parameters:

 BIT Flags.Broadcast
 WORD_VAL Destination
 WORD_VAL ClosedownPeriod
 THREEBYTE_VAL SleepPeriod
 WORD_VAL WakeupPeriod

Meaning On Exit. Cannot occur.

Action On Entry: Sends a message to the
device(s) specified by Destination, indicating that
they may sleep. If Broadcast is true, Destination is
interpreted to be a Functional Cluster and the
message is broadcast. If Broadcast is false,
Destination is interpreted to be a short address
and the message is unicast.

Refer to Network-Sleep.indication for definitions of
ClosedownPeriod, SleepPeriod and
WakeupPeriod.

MBS_Network_Sleep_Confirm

Parameters:

 BYTE Status

Meaning On Exit. Confirms that an
MBS_Network_Sleep_Request operation has
completed.

If Status is 0x00, processing was successful.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Network_Sleep_Indication

Parameters:

 WORD_VAL SourceAddr
 WORD_VAL ClosedownPeriod
 THREEBYTE_VAL SleepPeriod
 WORD_VAL WakeupPeriod

Meaning On Exit. A network sleep message was
received. SourceAddr will contain the short
address of the new device. It will have the correct
Application ID.

ClosedownPeriod is the duration, in seconds, from
the moment Network-Sleep.indication was
generated, that the application should continue to
keep its MailBox layer active on and respond to
messages if required. The application may not
initiate any new MailBox operations within the
Closedown period.

The SleepPeriod is the duration, in seconds, from
the moment the Network Sleep message was
received, that the receiving applications may enter
a sleep state. Prior to sleeping, an
MBS_Device_Sleep_Request should be issued to
suspend and power down the ZigBee stack.

At the end of the Sleep period, the application
shall wake up and issue an
MBS_Device_Wake_Request to power up and
resume the ZigBee stack.

The WakeupPeriod is the duration, in seconds,
immediately following the end of the Sleep period.
During this period, the application may not initiate
any transmissions unless it first receives a
transmission from another device.

Sleep is optional on receipt of a Network-
Sleep.indication. Devices which must remain
awake in order to continue to provide services for
non-MailBox nodes in the ZigBee network should
stay awake.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Page 22 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Data Transfer

MBS_Data_Request

Parameters:

 BIT Flags.IsBroadcast
 BIT Flags.IsAcknowledge
 BIT Flags.IsRetry
 WORD_VAL Destination;
 BYTE DataPayloadLen
 BYTE* pRxData

Meaning On Exit. Cannot occur.

Action On Entry: Sends the data in pTxData to the
the device(s) specified by Destination.
DataPayloadLen shall indicate the number of bytes
to be sent.

If IsBroadcast is true, Destination is interpreted to
be a Functional Cluster and the message is
broadcast. If IsBroadcast is false, Destination is
interpreted to be a short address and the message
is unicast.

If IsAcknowledge is false, a Data.Confirm will be
issued as soon as transmission to nearest
neighbors is complete. If IsAcknowledge is false,
a Data.Confirm will be issued only when the
destination has replied with an acknowledgement,
or the operation times out. Acknowledgement is
only permitted for non-broadcast transmissions.

IsRetry should be false unless this is a repeated
attempt to transmit the previous packet.

MBS_Data_Confirm

Parameters:

 BYTE Status
 BYTE Seq
 WORD_VAL RetryDelay

Meaning On Exit. The data request has completed
processing. Possible status return codes are
given below.

Name Description Value
SUCCESS Operation completed successfully 0x00
UNKNOWN This packet received OK but

insufficient information to
determine if it is in sequence

0x01

SEQUENCE_ERROR An error occurred (unicast) 0x02
NOT_PERMITTED Operation not permitted 0x03
TIMED_OUT Acknowledge not received 0x04
RETRY_LATER Destination could not accept

packet; try again later
0x05

STACK_FAIL A ZigBee stack failure occurred 0x06
RESET_MISMATCH This packet received OK but a

device has been reset
0x09

CHECKSUM_FAIL Packet not received due to
checksum failure

0x0A

SUCCESS shall only confirm that the
destination(s) received the packets if the
transmission was acknowledged.

If the status is TIMED_OUT, RETRY_LATER, or
CHECKSUM_FAIL, the application may retry the
data request as many times as desired, provided it
does so prior to transmitting any further packets. If
it does so, pTxData must be reloaded and the
Data.request flag Retry should be set to true. If
the status is RETRY_LATER, the retry should
occur no sooner than 256×RetryDelay symbol
periods later.

Seq is provided for informational purposes and
indicates the sequence number used to transmit
the packet. If the status is STACK_FAIL, Seq will
contain the ZigBee stack error status value. The
most likely error status is 0x03, APS_NO_ACK,
indicating no response from another device.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Data_Indication

Parameters:

 BYTE Status
 WORD_VAL SourceAddr
 BYTE Seq
 BYTE DataPayloadLen
 BYTE* pRxData

Meaning On Exit. A data frame was received from
another device. Possible status return codes are
gives below.

Page 23 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Name Description Value
SUCCESS Operation completed successfully 0x00
UNKNOWN This packet received OK but

insufficient information to
determine is in sequence

0x01

SEQUENCE_ERROR An error occurred (unicast) 0x02
STACK_FAIL A ZigBee stack failure occurred 0x06
FRAMES_LOST This packet received OK but

earlier packet(s) are missing
0x07

LATE_FRAME This packet received OK but a
later packet has already been the
subject of a Data.indication

0x08

RESET_MISMATCH This packet received OK but a
device has been reset

0x09

SourceAddr will contain the short address of the
sender. If DataPayloadLen is nonzero, pRxData
will contain the data payload and DataPayloadLen
shall indicate its length. The data in pRxData shall
only be valid until MailBoxTasks() is next called.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Custom_Request

Parameters:

 BYTE Custom_FID
 BIT Flags.Broadcast
 WORD_VAL Destination
 BYTE DataPayloadLen
 BYTE* pRxData

DataPayloadLen Meaning On Exit. Cannot occur.

Action On Entry: Sends the custom frame
Custom_FID to the device(s) specified by
Destination. If Broadcast is true, Destination is
interpreted to be a Functional Cluster and the
message is broadcast. If Broadcast is false,
Destination is interpreted to be a short address
and the message is unicast.

If a data payload accompanies the request, the
buffer pTxCustom shall contain it and
DataPayloadLen shall indicate its length. The
buffer is a fixed memory location defined by a
macro and memory does not need to be allocated.
It must be filled at the time the MailBoxState is set
to MBS_Service_Discovery_Request.

If no payload required, DataPayloadLen shall be
zero.

Example usage:

 MailBoxState = MBS_Custom_Request;
pMailBoxParam->MBS_Custom_Request.Flags.
 Broadcast = 1;
pMailBoxParam->MBS_Custom_Request.Destination.
 Val = 0x0000;
pMailBoxParam->MBS_Custom_Request.
 Custom_FID = 0x80;
pMailBoxParam->MBS_Custom_Request.
 DataPayloadLen = 7; // 7-char message
NVMRead((void *) pTxCustom,
 (void *) "Hello\r\n", 7);

MBS_Custom_Confirm

Parameters:

 BYTE Status

Meaning On Exit. The custom request has
completed processing.

If Status is 0x00, processing was successful in
terms of transmitting to the nearest neighbor.
Custom frames are not acknowledged, so this
does not guarantee that the message was
received by the destination.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

MBS_Custom_Indication

Parameters:

 BYTE Custom_FID
 WORD_VAL SourceAddr
 BYTE DataPayloadLen
 BYTE* pRxData

Meaning On Exit. A custom frame was received
from another device.

Custom_FID will contain the ID of the custom
message. SourceAddr will contain the short
address of the sender. If DataPayloadLen is
nonzero, pRxData will contain the data payload
and DataPayloadLen shall indicate its length. The
data in pRxData shall only be valid until
MailBoxTasks() is next called.

Action On Entry: State returned to MBS_Idle or
MBS_Wait.

Example usage:

 if (MailBoxState == MBS_Custom_Indication)
 {

// Payload is in:
pMailBoxParam->MBS_Service_Discovery_Confirm_ZDO.
 pRxData

// Length is in :
pMailBoxParam->MBS_Service_Discovery_Confirm_ZDO.
 DataPayloadLen

 }

Callback Functions

The following three callback functions must be
provided even if they are not used:

void PriorityUserInterruptHandler(void)

Used for very high priority interrupt processing.
This takes precedent over all other processing,

Page 24 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

including caching incoming ZigBee messages.
Anything using the priority interrupt handles must
complete very quickly. Typically it will be used to
note that an event has occurred, for example
UART data has been received, so that it may be
processed at a later time.

void UserInterruptHandler(void)

Used for normal priority interrupt processing.

void ZigBeeHook(void)

ZigBeeHook allows advanced users to sneak look
at the state of the ZigBee stack. If you investigate
the ZigBee stack source, you can declare
variables as extern and inspect them from within
this hook function. DO NOT modify any variables -
that would invalidate stack compliance.

Utility Functions

The utility functions are parts of the ZigBee stack
which have been exposed because the application
may also have independent uses for them. Note:
MailBoxInit() must be called before using any of
these functions.

void NVMWrite(NVM_ADDR *dest, BYTE *src, BYTE count)

NVMWrite writes up to 255 bytes to nonvolatile
memory. Note that the entire 0x40-byte-aligned
section of memory is erased and restored during
this process, so the entire section of memory
should not contain executable code. Data is
verified before writing, so writing identical values to
the memory does not exhaust it.

void NVMRead(BYTE *dest, NVM_ADDR *src, BYTE count)

NVMRead reads up to 255 bytes of nonvolatile
memory.

TICK TickGet(void)

TickGet provides a clock which counts symbols
(1/62,500ths of a second). The timer is 4 bytes, so
the clock rolls over very 19 hours.

TICK TickGetDiff(TICK a, TICK b)

TickGetDiff calculates the difference between two
time values.

unsigned char * SRAMalloc(unsigned char nBytes)

SRAMalloc allocates and returns the address of
nBytes of RAM from the heap. Zero is returned if
the memory could not be allocated.

void SRAMfree(unsigned char * pSRAM)

SRAMfree must be used to free memory
previously allocated with SRAMalloc.

MailBox Information Base (MIB)

The following mailbox constants are used by the
MailBox:

MIB_ApplicationEndpoint Endpoint used by this
Application ID. The default value is 0x10. (1 byte)

MIB_ApplicationID Four-byte Application ID. If
the application can guarantee that it is the only
operator of MailBox applications on the network,
the three most significant bytes may be 00:00:00;
the least significant byte may then be application
specific. To obtain a unique allocation of the
upper three bytes, contact FlexiPanel Ltd. Default
value is 0x00000000. (4 bytes)

MIB_ClusterList A list of seven 2-byte functional
clusters which are to be supported in addition to
the mandatory cluster, 0x0000. If fewer than
seven clusters are to be specified, the remainder
should be set to the null cluster value, 0xFFFF.
Default value is all null clusters. With ZigBee 1.0,
the maximum non-null cluster value is 0x00FD. (14
bytes)

MIB_MACaddress The 8-byte MAC address of
the device. This must be set before starting
MailBox operations. (8 bytes)

MIB_MailBoxTimeout Number of symbol
periods expected for a message to propagate to
another node in a network and for a reply to be
received. If a reply is not received within this time,
or a multiple of it if appropriate, an operation will
be abandoned. Default value is 0x00010000 –
approx one second. (4 bytes)

MIB_PALevel Transmit power as device in
CC2420 documentation. Default value is 0xFF,
maximum power. (1 byte)

MIB_PersistTime Symbol periods that a
message should reside on a router pending
collection by a sleepy end device. Default value is
0x00400000 – approx one minute. (4 bytes)

MIB_PollRate Symbol periods between sleepy
end device’s polls to its parent for messages.
Sleepy devices are required to do this while awake
in order to pick up messages. Other devices
(except the coordinator) may choose to do it
simply to confirm that the parent is still there.

Page 25 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Default value is 0x0080 for sleepy devices (approx
half a second) and 0x0000 for other devices.

MIB_RetryDelay The period, in multiples of 256
symbol periods, which a remote device should
pause before attempting to retransmit if incoming
data is to be rejected for flow control reasons. If
the data is to be accepted, the value is 0x0000.
The default value is 0x0000. Unlike most other
MIB values, this value is in RAM and so may be
set directly. It is reset to the default value on
startup. (2 bytes)

MIB_RedirectAddr The destination to send
messages to when the Redirect Cluster (0xFFFE)
is specified in a Data.request. If the first byte is
zero, the second and third bytes shall be
interpreted as a short address. If the first byte is
nonzero, the second and third bytes shall be
interpreted as a broadcast cluster.

The value 0xFFFFFF shall be interpreted as no
address being specified and no transmission shall
be made and the Data.confirm shall report success.
Unlike most other MIB values, this value is in RAM
and so may be set directly. It is reset to
0xFFFFFF on startup. (3 bytes)

MIB_SeqBufSize Number of sequence records to
buffer in order to monitor packet sequence / loss /
repetition. Refer to MailBox profile definition for
details. Default value is 0x10 for Pixie, 0x04 for
Pixie Lite. Maximum value 0x2A. (1 byte)

Macros

Note that setting nonvolatile MIB values may not
necessarily have any effect until the ZigBee stack
is next initialized.

SetAppID(x), SetAppID(x) set and retrieve
MIB_ApplicationID, where x is a pointer to a 4-
byte buffer in RAM.

SetAppEP(x), SetAppEP(x) set and retrieve
MIB_ApplicationEndpoint, where x is a pointer to
a 1-byte buffer in RAM.

SetClusterList(x), SetClusterList(x) set and
retrieve MIB_ClusterList, where x is a pointer to a
14-byte buffer in RAM.

SetMACAddress(x), GetMACAddress(x) set and
retrieve MIB_MACaddress, where x is a pointer to
an 8-byte buffer in RAM. The device must be
reset after setting this value.

SetMailBoxTimeout(x), GetMailBoxTimeout(x)
set and retrieve MIB_MailBoxTimeout, where x is
a pointer to a 4-byte buffer in RAM.

SetPALevel(x), SetPALevel(x) set and retrieve
MIB_PALevel, where x is a pointer to a 1-byte
buffer in RAM.

SetPersistTime(x), GetPersistTime(x) set and
retrieve MIB_PersistTime, where x is a pointer to
a 4-byte buffer in RAM.

SetSeqBufSiz(x), SetSeqBufSiz(x) set and
retrieve MIB_SequenceBufferSize, where x is a
pointer to a 1-byte buffer in RAM.

extern WORD_VAL MIB_RetryLater may be read
and modified directly by the application at any time.

extern REDIR_VAL MIB_RedirectAddr may be
read and modified directly by the application at any
time.

RANDOM_LSB, RANDOM_MSB provide a
pseudorandom number generated from the Timer0
clock.

Page 26 9-Oct-06 Mailbox API DS499-2 © FlexiPanel Ltd Patents may apply and/or pending www.FlexiPanel.com

Development Kit Inventory

The ToothPIC Development Kit contains:

1. The files MailBox.h, MailBox-PHCC.lib, MailBox-PHCR.lib, MailBox-PHCF.lib,
MailBox-PHCS.lib, MailBox-LHCF.lib, MailBox-LHCE.lib, MbxLink4620.lkr and
MbxLink2520.lkr, which are required for MPLAB-based applications development.

2. The files PixieDARC.c, Config.c, which are required for the example application, and project files
for the six different builds PXDC, PXDR, PXDF, PXDE, PLDF, and PLDE.

3. This documentation, MailBoxAPI.pdf.

4. The PixieDARC documentation, PixieDARC.pdf.

The MPLAB development environment and C18 compiler must be bought separately from Microchip
Technology Inc (www.microchip.com) or one of its distributors.

Development Support

FlexiPanel Ltd publishes free Sniffer firmware which parses MailBox frames which may prove useful.
Mailbox.lib code snippets can also be provided to partners if a nondisclosure agreement is signed. Please
contact us if you have any comments or suggestions.

Revision History

Version Date Major revisions
103521200906 20-Sep-06 Initial release
103521061006 06-Oct-06 ZigBee Alliance Profile 0xC1EE assigned

Please note the following with ToothPIC release 103521200906:

• Security not implemented.

• MailBox Profile may be subject to revision during the registration process with the ZigBee Alliance.
Commercial product release with this version may require later firmware upgrades to maintain
compatability.

Contact details

The MailBox profile was developed by FlexiPanel Ltd:

FlexiPanel

FlexiPanel Ltd
2 Marshall Street, 3rd
London W1F 9BB, United Kingdom
www.flexipanel.com
email: support@flexipanel.com

