Toothpick 2.1"

;|exipane| PIC with integral Bluetooth and Toothpick Services firmware layer

phone and module not to scale

Summary

Toothpick 2.1 is a PIC microcontroller and
LinkMatik radio combination, preloaded with
Toothpick Services firmware providing FlexiPanel
user interface server, wireless field programming
and Toothpick Slave for optional external host
control.

Hardware Features

e FCC/ CE certified Class 1 Bluetooth V2.0
radio, 100m range, integral antenna

128Kbyte Flash, 3.5K RAM, 1K EPROM up to
512Kbyte 12C external memory

e 12 x 10-bit A to D converter
e 5 x 10-bit PWM outputs
e Serial UART, 12C and SPI communications

e 2interrupts

e PCM audio features anticipated

e 24MHz and 32KHz oscillators

e Low dropout 400mA power regulator

e 51 x 22 mm through-hole and surface mount
e Low cost Lite version available

Ordering Information

24MHz 32768Hz

i°h oh T o

LDO 5V reg
400mA

ANO - AN11

TxD - RxD
PIC18LF6720

CCP1-CCP5

or

SDA - SDO - SCL PIC18F67J10

/Jf /Jf %
Green Red Pushbutton

Toothpick Services Features

LinkMatik
Bluetooth
module

INTO - INT1

e FlexiPanel server — creates user interfaces on
computers, PDAs, cellphones with no
development needed on remote devices

e Wireless field programming lets developers
distribute firmware upgrades electronically

e System services including: Bluetooth
communications, interrupt and memory
management, sleep-safe real time clock with
daylight savings time / day-of-week calculator

Operating Modes

e Pre-tested Firmware Solutions ready for
immediate standalone operation, including:

- DARC-I™ Data acquisition and remote
control managed via Bluetooth

- DARC-II"" Data acquisition and remote
control with FlexiPanel User Interface

e Toothpick Slave where Toothpick is controlled
by a host processor via a serial link.

e Standalone Toothpick programmable in C for
low-cost, customized standalone operation.

Part No Description

TP21-DIL Toothpick 2.1, 28-pin Dual-in-Line package, 3.3V — 5V
TP21-SO Toothpick 2.1, 28-pin surface mount package, 3.3V — 5V
TP21L-SO Toothpick 2.1 Lite, surface mount package, 3.3V

Manufactured to 1ISO9001:2000

FMTEINE

Page 1 15-Apr-07 Toothpick2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Toothpick 2.1

SUMMAIY ettt eeeeeeeees

Hardware Featuresccccccoiiiiiiiiiicn.
Toothpick Services Featuresccocvvveeee.
Operating Modesccoocciiiiveieiiiiiieeeeen
Ordering Informationcccccceeeiviiciiieeneeen.

Mechanical Data.........c.ccvevcveinreeieee e
Pin Descriptionscccoviveveeeie i
Schematic Diagramcccccccveeeviiicciiieeneeeeeeenne
Technical Specifications.........cccccceevviiieennninn.

Physical........ccuiii e
Electrical.........ooeeiieeeeiieeee e

Application Developmentccccocceieennnen.
Wireless Field Programming..........cccccevieeen.
FlexiPanel User Interface Server....................

Hardware Designcccccvveveeeei i

Power Regulation...........cccoeeeiiiieiiniiene e,
MiCroproCesSOr.........ccocveviieiiieieeeeeeeeeeeeeeeeeeeeees
LinkMatik Bluetooth Radiocccccceeeeein.
Peripheral Componentscccecccuvvveeeeeennn.
Physical Design Guide.........ccc.cccoeevuvivieeenennn.
SO Module Soldering Guidecccvvveeeeenn..
Toothpick Lite.......uuuueeiiceceeeee
Migration from Toothpick 1.0cccceeeenee.
Advanced Features........ccccccoevviiiiiiiiieee s
PCM AUIO ...coeeiiiiieeeciee e

Application Development Guide.....................

Standalone Firmware Solutions......................
Development Using Toothpick Slave..............
Development Using MPLAB C18....................
Alternative Development Systems..................

Programming Toothpickcccooiis

Wireless Field Programming.........cccccceeeeennnnn.
Conventional Device Programming

Hello World Bitstream Firmware Solution......

Descriptionoocveei i
Executing the Finished Application.................
Application Development in MPLAB

Hello World FlexiPanel Firmware Solution

Description ..o
Executing the Finished Application.................
User Interface Development in FlexiPanel

DESIgNer ...
Application Development in MPLAB.

Toothpick Diagnostic Firmware Solution....... 26
Description........cceeeeveeeieiiieee e 26
Executing the Finished Application 26
User Interface Development in FlexiPanel
DeSIgNEr .. 29
Application Development in MPLAB................ 29

DARC-I Firmware Solutionccccoevvveeininenen, 32
Description.........ooovvviiiiiiiiiiiiieeee 32
Executing the Evaluation Version.................... 32
Customization in MPLAB..............cceeecuvvveeeen... 32

DARC-Il Firmware Solutioncccocceieenins 35
Description........cc.eeeeveeeieiieee e 35
Executing the Evaluation Version.................... 35
Customization in MPLAB.............ccooevcivieeennn.. 36

HappyTerminal Firmware Solution.................. 40
DesCription........oocveeeeiiiieee e 40
Executing the Finished Application 40
User Interface Development in FlexiPanel
DESIGNEr .. 40
Application Development in MPLAB................ 40

Toothpick Slave Firmware Solution 43
Description.........ooevveiiiiiiiiiiiieieee 43
Initializing Toothpick Slave.............ccccocceeeennee 43
A QUICK TOUN ... 44
Migration to MPLAB..........cccviiiiiiiiiiieeeen 47

Guide to Toothpick Slave Development......... 50
Adding a FlexiPanel User Interface................. 50
CoMMANASuuviiiicccccccccce e 51
RESPONSES.....eeiiieee e 64
Command / Response User Guide 68

Guide To MPLAB C18 Development 71
Development Environment...............ccccevvvveeee. 71
1. Starting Point Selection............ccccoeeeveennee 71
2. User Interface Design.........ccccooveeveeeeeincnnnn, 71
3. Project Building...........ccoovviiiiiieieieeiiee 71
4. Application-Specific Coding..........ccccccceennees 72
5. Toothpick Programmingcccoeceeeeennnnens. 72
6. Debuggingccoooiiiiiii 72
7. Production Programming..........cccccceevnnneen. 72

Designing User Interfaces........ccccccovvvveieiinnenn, 73
FlexiPanel Bluetooth Protocolc........... 73
Introduction to FlexiPanel Controls 73

Toothpick Services Reference...........ccccuuee. 75
ANAIOG 1/O...coiiiiee e 75
LinkMatik Control...........ccccveeeiiiiiiiiiiiieeee e, 76
LinkMatik Serial Communications 79

Page 2 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Bluetooth Device Classes..........cccccoocverernnnnen. 81
Callbacks........cooeviiiieiiiiiee e 84
CompParatorsc.ceeeiiieiee i 85
Configuration Settings..........cccccevviiiiiinns 85
Count, Capture and Compare.........c...cccueeennee 86
Copy Protection..........ccocceiiiiiiiiiiiiiieeee 86
Date-Time Valuescccoiiieiiiiiiiieeeeeen, 86
Digital I/O (BitwiS€)ceeevvvereeiiiire e 86
Digital I/O (Parallel)..........ccoceeeiiieieeieee e, 87
FlexiPanel Server.........cccccovveiiiieee e 88
Initialization ... 94
INEEITUPLS .. 95
I2C Synchronous Serial /Occcceveveeiinns 98
Low Voltage Detect..........cccoeeiiiiiiiiiiiieeee 98
Memory Managmentccccoovieeeiiiieee e 98
Memory Map and Linker Scriptscc........ 100
Memory Modelcceeeiiiiiiiiiiieeeee 101
Power Saving Modesccccooviieeeiiiiienenns 101
Pushbutton and LED functions 102
Pulse Width Modulationcccccieeeneenn. 103
Real Time ClocK........ccceveiiiiiiiiiiiiie e 103

Reset State......oooceeeieiiii e 105
Semaphores ..o 105
Serial UARTooiiiiiiee e 106
SPI Synchronous Serial I/O............cccceeen.e 106
100 = SR 106
Toothpick Public Datacccccceeeeeennn. 107
Toothpick Settings........ccovvieeiiiiiieiiiieeeee 107
Trace MacCrOS.....ccoeeeeiiiiiiieeie e 108
Utility Servicesccoveieveiiiiiee e 108
VectorMap ... 110
Wireless Field Programming Mode 110
Development Kit Inventoryccccceeeeeennn. 112
Revision HiStory ... 113
Glossary and Notation.........ccccceeeeeviiiiiinnennnn. 114
Legal NOLICESuvuiiiieeeiiiiiiieeee e 116
Contact Detailsccceovvveeeiiiiie e 117
www.FlexiPanel.com

Page 3 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending

Mechanical Data

‘ Avoid PCB tracks and components close to antenna. ’7
Ideally, locate on the edge of the main board. ‘ ‘ ‘
‘ antenna ‘ ‘ ‘
| _ |
ANT1 [O] (O] ccps
AN10 [O] [O] rRe@
Ans [O] 18LF6720 [O] ceps
51 ANS [O] (O] ccp2
AN4 [O] [O] copa
SDA (O] [O] @
spo (O] [O] Ane
AN6 [O] [O] Ano
pin pitch
AN [O] s - [O] NT1PeC i
AN7 §] e @ INTO/PGD (0.1 inch)
AN2 §] Pushbutton @ scL
cept [O] [O] vss
ANT [O] LED LED [O] vd
Vin |O O| NMCLR offset
— :] (g @@ CS) [: I 1.27mm
PCM audio
| |
e |
! width 22.00 ‘ 55 4 6
Dimensions in mm
Rout area
49 x 17
a a | |
a a | ||
a P o | | |
hole dia 0.8
a a | ||
a a | |
a a | |
| | hap
o 2.54I g | oas
a a | |
a a | |
a a | |
o] 175x175 [L LY
a a | |
a (o]o]o]e] a - ﬁ 152
\ J il
[row pitch 17.78 ‘ 254 H |

DIL PCB pad layout

row pitch 20.70 I

SO PCB pad layout
Pad design leaves exposed area as
solder pool and test point

Notes: To remove the module from an IC socket or breadboard, lever it out using a screwdriver against the
pin headers at the sides. Levering from either end may damage components. Aries brand ZIF sockets will
accept Toothpick 2.1 DIL. (e.g. Farnell p/n 1169111, Digi-Key p/n A309-ND). Pins not fitted to PCM audio

pads on DIL version.

Page 4 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Pin Descriptions

Pin Name Description

ANO Analog input / digital 1/O (note 6)

AN1 Analog input / digital 1/O (note 6)

AN2 Analog input / analog negative voltage reference input / digital I/O (note 6)
AN3 Analog input / analog positive voltage reference input / digital /0O (note 6)
AN4 Analog input / digital 1/O (note 6)

AN5 / RE1 Analog input / digital 1/O (note 3, 5)

ANG6 Analog input / digital 1/O (note 5)

AN7 Analog input / digital 1/O (note 5)

ANS8 Analog input / digital 1/O (note 5)

AN9 Analog input / digital 1/0 (note 5)

AN10 Analog input / digital 1/0 (note 5)

AN11 Analog input / digital 1/0 (note 5)

CCP1 Capture / compare / pulse width modulation 1/O (note 4)
CCP2 Capture / compare / pulse width modulation 1/O (note 5)
CCP3 Capture / compare / pulse width modulation 1/O (note 6)
CCP4 Capture / compare / pulse width modulation I/O (note 6)
CCP5 Capture / compare / pulse width modulation I/O (note 6)
INTO Interrupt pin / programming pin / digital /O (note 4)
INT1 Interrupt pin / programming pin / digital /O (note 4)
NMCLR Reset input / programming pin (may be left unconnected)
PCMC PCM audio clock (note 7)

PCMI PCM audio input (note 7)

PCMO PCM audio output (note 7)

PCMS PCM audio sync (note 7)

RxD UART serial data input / digital I/O (note 4)

SCL 12C clock / SPI clock / digital I/O (note 4)

SDA I12C data / SPI data input / digital I/O (note 4)

SDO SPI data output / digital 1/0 / counter input (note 4)

TxD UART serial data output / digital I/O (note 4)

Vdd Regulated +5V power input / output (note 1,2)

Vin Unregulated power input 5 — 10V (note 1,2)

Vss Power ground reference

1. Either (i) regulated power should be provided on Vdd and Vin left unconnected or (ii) unregulated power should be provided on Vin
and Vdd may be used as a regulated power output.

Total current draw on all outputs (including Vdd if used as a power output) shall not exceed 200mA

On Toothpick, pin is connected to AN5. On Toothpick Lite this pin is connected to RE1 and is digital 1/O only.
Max current source/sink 25mA on Toothpick Lite

Max current source/sink 8mA on Toothpick Lite

Max current source/sink 2mA on Toothpick Lite

N o o s~ w DN

3.3V logic only

Page5 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Schematic Diagram

Vss
22pF| 22pF| 22pF| 22pF

somMHzH T 0 H32768Hz
Ropt vdd

OSC1 0SC2 RC1 RCO /’\ LDO 5V reg
, 12 Vdd J Vout 400mA Vin Vin
ANO - AN11 € ANO - AN11 Avdd Gnd
100nF| 1WF[
Vss
TxD &< RG1 J vss

AVss

RXD &< RG2
ccpi<—RC2
ccp2 & RE7 Vss
ccp3<— RGO
CCP4&—RG3
CCPs < RG4

SDA < Rc4

sCcL<—RC3

PIC18LF6720

LinkMatik
Surface Mount

INTO/PGD PGD Bluetooth
module
RBO
INT1/PGC T PGC
RB1
SDO ﬁ RC5
TOCKI

N
NS

NMCLR NMCLR
4KT7. RE5 RD4 RB3 vdd
47K
I/SZ [SZ L T vdd
vdd Green Red
|:| |:| 1uF
1K 1K

Vss

The LinkMatik Bluetooth radio is also available separately from FlexiPanel Ltd. For detailed information,
consult the LinkMatik data sheet available from www.FlexiPanel.com

Page 6 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Technical Specifications

Physical
Operating / storage temperature -40°C to +85 °C
Dimensions L x W x H 51mm x 22mm x 10mm excluding pins
Electrical
Hardware platform Toothpick Toothpick Lite
Supply Voltage (unregulated) 3.2V to 10V n/a
Supply Voltage Vdd (regulated) 3.2V to 5.5V 3.2V to 3.4V
Average current, Idle (3.3V supply) 10mA 10mA
Average current, during discovery and connecting 60mA 60mA
Average current, connected, transmitting 30mA 30mA
Average current, connected, receiving 40mA 40mA
Average current, lowest power sleep mode 370pA 370pA
Max voltage on I/O pins -0.5V to Vdd+0.1V -0.5V to Vdd+0.1V
Max voltage on PCM Audio pins -0.4V to 3.4V -0.4V to 3.4V
Maximum current on I/O pins CCP1, INTO, INT1, 25mA 25mA
RxD, SCL, SDA, SDO, TxD
Maximum current on I/O pins AN5 — AN11, CCP2 25mA 8mA
Maximum current on I/O pins ANO — AN4, CCP3 — 25mA 2mA
CCP5
Maximum total current on all /O pins 200mA 200mA

Please consult the documentation for the PIC18LF6722 / 6722 / 67J10 available from Microchip Technology
(www.microchip.com) for further technical characteristics of the 1/0O pins.

Radio
Max RF output power Class | = 100mW = +20dBm
RF frequency range 2402MHz to 2480MHz
RF channels / frequency hop rate 79/1600 Hz
Range 100m nominal
Communication latency, pP to yP 8ms to 15ms
Maximum data rate 50-90 Kbaud depending on conditions

Please consult the documentation for the LinkMatik available from FlexiPanel Ltd (www.FlexiPanel.com) for
further technical characteristics of the Bluetooth radio.

Bluetooth qualification & logos and trademarks

The radio has been pre-qualified and is listed in the Bluetooth Qualified Products as B00524. FlexiPanel Ltd
is registered as an Adopter Member with the Bluetooth SIG, Inc. OEMs wishing to re-brand FlexiPanel Ltd
Bluetooth products and use the Bluetooth Logos and trademarks must also register as Adopter Members.
Membership is free, refer to www.bluetooth.org for details.

FCC, CE modular approval

The radio has ‘modular approval’ for USA and certain European countries, provided the existing integral antenna
is used. The CE mark on the module indicates that it does not require further R&TTE certification. The
exterior of the product should be marked as follows:

| Contains Transmitter Module FCC ID: QOQWT11 |

Page 7 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Overview

& Prefer to learn by doing? Head straight to
the “Hello World” Firmware Solutions.

Toothpick combines a PIC18LF6722 / 6722 / 67J10
microcontroller and a LinkMatik Bluetooth radio,
and is preloaded with Toothpick Services including
FlexiPanel user interface server, wireless field
programming and Toothpick Slave host-controlled
operation.

Application Development

There are four ways to develop an application
using Toothpick:

1. Use a pre-compiled Standalone Firmware
Solution such as:

- Data acquisition and remote control with
bitstream interface

- Data acquisition and remote control with
FlexiPanel service

2. Use the Toothpick Slave Firmware Solution to
allow Toothpick to be controlled by a host
processor.

3. Applications can be developed in C using
MPLAB C18 from Microchip Inc. This allows
the developer to take advantage of the

Toothpick Services provided by FlexiPanel Ltd.

4. Applications can be developed using any
suitable microcontroller development system
such as Hi-Tech or CCS, although the
Toothpick Services will no longer be available.

Firmware Solutions, including the Toothpick Slave,
are relatively straightforward and suitable for most
skill levels. In general, source code is provided for
Firmware Solutions so that developers may
inspect the programming techniques employed
and use them as starting-points for customized
solutions.

Technical support for one-off, hobbyist and
student projects is limited to Firmware
Solutions and Toothpick Slave.

Development using MPLAB C18 and/or other
development systems minimizes cost but is
relatively advanced and full proficiency with the
development system is a necessity.

The Bluetooth radio used in Toothpick is the same
component as used in FlexiPanel Ltd’s LinkMatik
and LinkMatik Bluetooth serial bridge modules.

Wireless Field Programming

Toothpick’s wireless field programmer allows both
developer code and Toothpick Services to be
upgraded using any Bluetooth-equipped PC.
Developers can distribute products and then at a
later date provide firmware upgrades to customers
as required.

FlexiPanel User Interface Server

The FlexiPanel User Interface server takes
advantage of FlexiPanel Ltd’'s unique user
interface protocol. Remote devices such as PCs,
PDAs and cellphones can connect to Toothpick
using a freely available FlexiPanel Client software
layer. Once connected, the FlexiPanel Server tells
the remote device what controls to display on its
user interface. Both the user and Toothpick can
then modify the user interface controls as required.

Developer’s Remote Device
Product
User
ToothPIC Interface
FlexiPanel | Bluetooth FlexiPanel
Server <> Client S/\W

In effect, the FlexiPanel User Interface server
allows Toothpick to provide high quality user
interfaces without incurring the component cost.
The Bluetooth link allows Toothpick to be
controlled while remaining out of view or out of
reach, improving enclosure costs, aesthetic design
and safety.

User interfaces are designed using FlexiPanel
Ltd’s free FlexiPanel Designer software. This
creates user interface specifications which are
then programmed into Toothpick via Bluetooth or
compiled directly into the firmware.

Page 8 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Hardware Design

Mechanical drawings, schematics and technical
specifications are provided at the beginning of this
document.

Power Regulation

Toothpick power consumption is dominated by the
LinkMatik radio, whose current consumption is
55mA during connection and device discovery.
When the Toothpick module is turned off, the
18F6722 / 67J10 typically draws 10mA (plus I/O
pin current drain) when clocked with the 20MHz
oscillator and 50uA with the 32kHz oscillator.

Toothpick may be powered with a 3V3 — 5V
regulated input to the Vdd pin. Maximum
regulated supply voltage is 5.5V. Minimum rated
voltage is 3.3V.

Alternatively, an unregulated input between 3V3
and 10V may be applied to the Vin pin where it will
be regulated by a 400mA regulator. In this second
case, the Vdd pin functions as a 5V regulated
power source for external circuitry. In this case,
the total current draw in all /O pins including Vdd
must not exceed 200mA. The power regulator is a
low-dropout type and will operate as an
unregulated power source below 5V.

LinkMatik is separately regulated to operate at 3V3.

A 1uF tantalum capacitor is provided between Vin
and Vss and a 100nF tantalum capacitor is
provided between Vdd and Vss.

Microprocessor

Toothpick 2.1 uses a PIC18LF6722
microprocessor. Toothpick 2.1 Lite uses an
18F67J10. These devices are standard
components available from Microchip Technology
Inc. For detailed information about this component,
consult the specific product information available
at www.microchip.com.

Migration from the PIC18LF6720 to the
PIC18LF6722 should be transparent if using
wireless field programming. When developing
applications, the programmer will remind you to
program devices with the correct library.

LinkMatik Bluetooth Radio

The PIN code, unless otherwise specified, is 0000
(four zeroes).

The LinkMatik Bluetooth Radio component is also
available as a separate product line from
FlexiPanel Ltd. For detailed information about this
component, consult the specific product
information available at www.FlexiPanel.com. The
LinkMatik documentation includes source code to
allow various remote devices to connect to it, and
also gives detailed examples of how to use the
commands.

The radio has regulatory approval for USA and
certain European countries as described in the
LinkMatik documentation. The key regulatory
points are:

e Approval applies only if the existing,
unmodified integral antenna is used.

e The exterior of the product should be
marked as follows:

Contains Transmitter Module FCC ID: QOQWT11

e The CE mark on the module indicates that it
does not require further R&TTE certification.

The radio is a 2.4GHz Class | Bluetooth device
with an integral antenna. To achieve 100m range,
the corresponding Bluetooth device must also be
Class I.

During design, consider the RF characteristics of
the environment surrounding the module.
Experiment with the location and orientation of the
antenna and avoid locating it near conducting
materials (e.g. metal, water). Ideally, mount the
module so that the antenna overhangs the edge of
the board with no components or metal within 4cm
to the left or right.

Toothpick is usually supplied with the LinkMatik
module glued in place. Nevertheless, care should
be taken to not to apply any rotational force on the
LinkMatik module as this may damage its
connections to the main board.

Toothpick can also be supplied with the LinkMatik
as an optional clip-on component. This might have

applications where the Bluetooth radio is only
required for factory configuration.

Peripheral Components

In addition to the main components already
detailed, Toothpick includes:

e A 24MHz oscillator main system clock.

Page 9 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

o A 32768kHz oscillator providing a real time
clock and a low power alternate system
clock. The LinkMatik radio will not be
useable in the low power mode.

e Voltage level shifting components between
the PIC18LF6722 /6722 / 67J10 /
PIC18LF6722 and LinkMatik powered by 1/0O
pin RB4.

e Agreen LED connected to pin RES.
e Ared LED connected to pin RD4.

e A de-bounced active low pushbutton on 1/0
pin RB3.

Direct pin connections to the 1/0 pins shown in the
schematic diagram. Note that RBO/PGD,
RB1/PGC and RC5/TOCKI are tied together and
each pair should never be configured as conflicting
outputs. RBO/PGD and/or RB1/PGC may be
simultaneously switched to provide 50mA outputs.

Physical Design Guide

The antenna should ideally be located towards the
edge of, or even overhanging, the parent board.
No large components or metal objects should be
placed near it. Power planes on the parent boards
may marginally improved omnidirectionality.

Metal and high carbon-content casings should be
avoided if possible.

SO Module Soldering Guide

The SO module cannot be guaranteed to pass
through a reflow oven intact. It must be soldered
manually using the following procedure:

1.Tin the contact pads on the module, trying to
get more or less the same amount of solder on
each. Work on a soft surface so that the
components on the topside are not damaged.

2.Tin contact pads on main board.

3.Place the module in position on the main
board.

4.Starting with the pads most likely to be in
physical contact, apply heat with a soldering
iron to the exposed part of the main board
pads. Abut the iron against the edge of the
module so that the heat is transmitted to the
contact area of the pads. After 10-15
seconds, remove heat.

5.Test for continuity between the pad on the
upper side of the board and the protruding part
of the pad on the main board.

6.Rework non-conducting contacts by applying
heat again and a little extra solder.

Toothpick Lite

A lower cost version of Toothpick is available. It
differs from the regular Toothpick as follows:

e Uses a PIC18F67J10 processor
e No EEPROM

e ROM has only 1000 write/erase cycles, 10
year retention

e When writing to ROM, memory locations
0x600 to OX9FF will be used as a temporary
buffers and their values will not be
preserved.

e Configuration bits are stored in Flash locations
0x01FFF8 to Ox1FFFD. Whether or not they
can be accidentally modified is not known.

e plLocalBTAddr and pVersionStr stored in
RAM not ROM

e A/D calibration required

e Reduced current source/sink on digital 1/0 (but
5.5V-tolerant)

e ANbS replaced by RE1 (digital I/O only)

¢ No on-board voltage regulation; 3V3 supply
voltage required

e No LEDs or pushbutton
e No 32kHz oscillator
e Available as SO version only

To compile MPLAB applications for Toothpick Lite,
change the processor to 18F67J10 and use the
Toothpick210OL.lib, Toothpick21OL.lIkr
versions of the services library and linker script.
An example Toothpick Lite project is provided for
the ToothpickTest application.

Due to the limited re-write capabilities of the ROM,
use of Toothpick Lite for development work is not
recommended. Separate Toothpick Lite
programming libraries are provided.

Migration from Toothpick 1.0/ 2.0

Transition from Toothpick 2.0 to 2.1 only requires
recompilation specifying the 18LF6722
microprocessor. The 2.1 development kit files use
the prefix Toothpick210.

Page 10 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Due to extensive design of the Bluetooth module,
there are a considerable number of minor changes
over Toothpick version 1.0.

Where subtle but important changes have been
made to functions, macros and variables in the
software libraries, their names have been changed
slightly. This is in order to force compile errors,
thus drawing your attention to them.

These differences are summarized as follows:

e Main processor will be migrating to
PIC18LF6722.

e Connections to PCM audio provided
e Surface mount version available

¢ DIL pin changed from formed pin type to
turned pin type, requiring a reduced hole size.

e 6mm longer

¢ Bluetooth 2.0 + EDR compliant

e Substantially reduced current consumption
e Sleep implemented in software

¢ BlueMatik is now names LinkMatik

¢ Up to 4 serial connections, although the
FlexiPanel Server assumes it is the only
connection.

¢ Variables beginning BMT now begin LMT.

e The name ToothPIC has been renamed
Toothpick.

e LMTtransmit batch transmit feature added

¢ Device class nonvolatile variable is
represented as a hex-digit character string

¢ Discoverability and connectability specified by
pPageMode variable; no LMTC_Slave
command exists.

A PIN code, if specified, will be required to
connect and the connection will be encrypted.

e Link Keys are stored on LinkMatik; no Link
Key map exists in Toothpick 2.1

o Logical errors reported as LMTE_Syntax
messages. Bluetooth stack errors reported in
the relevant disconnect messages.

o FxP_Start starts immediately; there is not
need to wait for an LMT_OK message.

e Opentooth firmware application no longer
supported due disproportionate technical
support burden

e BlueMatikTest / LinkMatikTest firmware
discontinued due to several remote devices
not meeting its standards

¢ FlexiPanel Protocol now public knowledge

e Source code “snippets” of the Toothpick
services library are available on request

Advanced Features

LinkMatik has many advanced features which may
be accessed using the LMTC_Generic LinkMatik
command. Refer to the LinkMatik data sheet for
details.

PCM Audio

The four PCM audio connections provide direct
access to the LinkMatik audio connections. At
present no software support is provided for these
pins.

Refer to the LinkMatik documentation for further
details of their use.

Page 11 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Application Development
Guide

& Prefer to learn by doing? Head straight to
the “Hello World” Firmware Solutions.

There are four ways to develop an application
using Toothpick:

1. Use a pre-compiled standalone Firmware
Solution provided by FlexiPanel Ltd or a third-
party can be loaded directly into Toothpick.
Firmware Solutions include:

- Data acquisition and remote control with
bitstream interface

- Data acquisition and remote control with
FlexiPanel service

2. Use Toothpick Slave Firmware Solution to
allow Toothpick to be controlled by a host
processor.

3. Applications can be developed using C using
MPLAB C18 from Microchip Inc. This allows
the developer to take advantage of the

Toothpick Services provided by FlexiPanel Ltd.

4. Applications can be developed using any
suitable microcontroller development system
such as Hi-Tech or CCS, although the

Toothpick Services may no longer be available.

Technical support for one-off, hobbyist and
student projects is limited to Firmware
Solutions and Toothpick Slave.

If the application uses the FlexiPanel User
Interface Server, the user interface is designed
using FlexiPanel Designer software. This is
detailed in section Designing User Interfaces.

- User interfaces for Firmware Solutions with
modifiable user interfaces are programmed
into Toothpick directly using the Bluetooth link.

- User interfaces for applications developed
using C18 are encoded as a computer-
generated files to be included in the
development project.

Standalone Firmware Solutions

Standalone Firmware Solutions require no
programming or external microcontrollers. They
are detailed in their individual Firmware Solutions

sections. They are compiled using MPLAB C18
and source code is included in the Development
Kit so developers can use them as starting points
for their own applications.

To load a precompiled, standalone Firmware
Solution, read Using Service Packs in the Wireless
Field Programming section.

Development Using Toothpick Slave

Toothpick Slave Firmware Solution does not
require Toothpick to be programmed. It is
controlled using an external microcontroller via a
serial interface.

Toothpick Slave allows Toothpick to be
customized quickly in using the microcontroller of
the developer's choice. At a later date, the
external processor code can be migrated into
Toothpick using MPLAB C18 to achieve cost
reductions without requiring a board redesign.

To load the Toothpick Slave Firmware Solution,
read Using Service Packs in the Wireless Field
Programming section.

Development Using MPLAB C18

Applications developed using MPLAB C18 can
take advantage of the Toothpick Services which
are pre-loaded when the product is shipped. This
is described in detail in the section MPLAB C18
Application Development Guide.

During development, Toothpick can be
programmed either conventionally using In Circuit
Programming or using the wireless field
programmer. Conventional programming makes
debugging easier.

In production, Wireless Field Programming
reduces costs. After sale, product upgrades can
be distributed electronically for customers to
upgrade themselves.

Alternative Development Systems

Toothpick applications can be developed using
PIC development environments other than MPLAB,
although complete erasure of the pre-loaded
Toothpick Services will be necessary. FlexiPanel
Ltd will only have limited ability to support
customers programming it in this way.

Page 12 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Programming Toothpick

Wireless Field Programming
Using Service Packs

To use a Service Pack to load a Firmware Solution or product upgrade, you will need a Bluetooth-enabled
Windows computer or Pocket PC. Start the program and a dialog box will appear similar to the one shown
below. Programming is as follows:

1. Power up Toothpick with the pushbutton held down. The red and green LEDs will flash
simultaneously to indicate that it is ready to be programmed. Press the button again if you want to
return to normal operation.

2. Using the Bluetooth software on your computer, search for Toothpick and make a serial connection to
it. The Bluetooth software will tell you which COM port it is using and you should enter the COM port
number in the box provided.

3. Press the update button to start programming. The red and green LEDs will flash alternately during
programming. The progress bar will flash three times when programming is complete. Toothpick will
then reset itself and start running the new Firmware Solution.

Peripheral Mode

— 1. Power-up with the button
Step 1: Reset Bluetronik with the pushbutton held down, Both Lﬂf)(/_ down so the LEDs flash

should Flash simultaneausly,

Step 2: Use Bluetooth ko connect Frarm this computer ta Bluetronik, 4 <L

Enker the COM port used in the box on the right. — | 2. Connect using Bluetooth

and enter the COM port used

Skep 3: Press the Update. .. button, Programming status will be
indicated on the progress bar below,

3. Press Update and monitor

// / progress on the meter

’ Update... ﬁ/r About. .
/

(nm]

Programming with FlexiPanel Designer

The FlexiPanel Designer application has some wireless field programming capabilities specifically for
customizing Firmware Solutions. This is documented separately in FlexiPanel Designer. It can also create
Service Packs for Windows and Pocket PC which you can distribute to allow customers and engineers to
upgrade firmware themselves.

Programming with Toothpick WFP

ToothpickWFP.exe is used for wireless field programming from Hex data files created by development
environments such as MPLAB C18. It can also create Service Packs for Windows and Pocket PC which you
can distribute to allow customers and engineers to upgrade firmware themselves.

ToothpickWFP.exe is in the Development Kit. To use it, you will need a Bluetooth-enabled Windows
computer. Start the program and a dialog box will appear similar to the one shown below. Program as
follows:

Page 13 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

1. Specify the hex file you wish to use for programming in the box labeled Firmware.

2. If you have external I2C memory connected to Toothpick and you wish to program it, specify the hex
file in the box labeled External Memory. Select 100kHz or 400kHz clock speed as appropriate for the
type of memory used.

® FlexiPanel Designer creates external 12C memory hex files if you specify external storage in
the user interface.

3. If you have an external host processor connected to Toothpick and you wish to program it, specify the
hex file in the box labeled External Host Processor. Select the host type as appropriate. Ensure that
the external host processor is connected for field programming operation.

® FlexiPanel Designer creates hex files for BASIC Stamp. Microchip Technology MPLAB
products create hex files for PIC products. Specify INHX32 hex file format.

4. Power up Toothpick with the pushbutton held down. The red and green LEDs will flash
simultaneously to indicate that it is ready to be programmed. Press the button again if you want to
return to normal operation.

5. Using the Bluetooth software on your computer, search for Toothpick and make a serial connection to
it. The Bluetooth software will tell you which COM port it is using and you should enter the COM port
number in the box provided. Specify ‘Enter programming mode at power-up’ for programming method.

6. Press the update button to start programming. The red and green LEDs will flash alternately during
programming. The status box will read “Programming succeeded” when it is finished. Toothpick
will then reset itself and start running the new firmware.

® Toothpick may continue to operate in an ICD-2 debug mode if it was previously doing so.

= Toothpick Wireless Field Programmer

Tookhpick Firmware
W Program Flash & EEPRGM Specify the linker-generated
hex file here
CeWCPY TP20) Tookhpick SDKIDARC-TI\DAERC-I1, hex Browse... | |

Specify any external
memory data (e.g. from

External Memar) A
¥ «— | FlexiPanel Designer) here

[Program External Memory |_ —

|
— Com port used to make

/ connections from the PC
Actions

[+ Toothpick is ready For programming on COM | 4

Creghe Service Packs., ..

Select either to program
Toothpick directly or create a
distributable Service Pack

Page 14 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

See the section Wireless Field Programming Mode in the Toothpick Services Reference for details on:
e Preparing hex files for programming.

e Recovery from an interrupted programming cycle.

Creating Service Packs

Service Packs can be created for Windows computers and Pocket PCs. To create distributable service packs,
select Create Service Packs... button in the ToothpickWFP.exe main dialog. The Create Service Packs...
dialog is displayed. Nearly all the text which appears in the service pack can be modified, allowing it to be
localized to specific languages.

Create Service Packs... @

Specify service pack T———
file names (no paths)

Windows C-1 Win.exe

Packet PC Fllename]MC-I PPC.exe

Wice Pack

COM part errar ‘ Error writing to the COM port, Are you sure

. . Communications error ‘ Error communicating with Toothpick. Are you
Specify service pack
application title

Step 1 text]Sl‘ep 1: Reset the module with the pushbutte

Skep Z text | Step 2t Make a Blustooth connection From th

Step 3 text | Step 3t Press the Update, ., butkan,

Update Mow button | Update. ..

About b line 1 ‘ DARC-T Service Pack,

About box line 2 ‘ () FlexiPanel Led

#About box line 3 ‘ v, Flexipanel.com

Close button bext | Close [¥ Show service pack creation date in line 4

Cancel

T

About button text | About. ..

When the Create Now... button is pressed, the “raw” service pack applications SPW.exe (Windows) and
SPP.exe (Pocket PC) are copied to the file names you specify and then the hex data is appended on the end
in a way that the service packs can read. SPW.exe and SPP._exe are in the Development Kit and must be in
the same directory as the Wireless Field Programmer application. The service packs will be created in the
same folder as the original firmware . hex file

The service packs applications may be executed on Windows and Pocket PC computers as described in the
section Using Service Packs.

About...

£y

My Service Pack V1.0
{c) My Company

VAL Y COMPAN'y ,£om
Feb 16 2005 19:47:51

Service pack About
dialog with custom
text (Windows)

Service Pack Uploader

et FlexiPanel com
Copytight {C) FlexiPanel Lkd
Feb 18 2005 19:47:40

Conventional Device Programming

To program Toothpick using conventional in-circuit programming, pin NMCLR functions as programming pin
Vpp, pin INTO functions as PGD and INT1 functions as PGC.

Page 15 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Hello World Bitstream Firmware Solution

The Hello World Bitstream firmware solution is a simple tutorial to demonstrate
how Toothpick can be used and programmed for binary communication using
Bluetooth.

Hello World Bitstream is straightforward. A Windows PC running ||y 14
HyperTerminal connects to Toothpick via Bluetooth. (HyperTerminal is a | |uria
Windows application for sending and receiving ASCII data to and from COM | |wor1a
ports such as the Bluetooth COM port.) -

As data is typed into HyperTerminal, it is sent to Toothpick. Toothpick ignores
it unless itis an ‘H or a ‘W’. If it is an ‘H’, it replies with the word ‘Hello’. If it is
a ‘W, it replies with the word ‘World’. x

« COM4 (Hluetooth) - Hyper Terminal

Description B ER g4 puter s

O Z 0B &

Hello
Horld
Helle
Hello
Hello

Cornncted DoO0:EA ETH 00 8N-1

Executing the Finished Application

(Throughout this section, use the four zeroes default PIN code 0000 if required.)

Hello World Bitstream is supplied as a Service Pack application which must be ‘Field Programmed’ into
Toothpick. This takes a few seconds and requires either a Windows PC or a Pocket PC with Bluetooth. The
procedure is as follows:

1.

Select either the HelloWorldBitWin.exe
(Windows) or HelloWor1dBitPPC._exe

(Pocket PC) service pack from the development | Sedien ey - Foeretenied doun. The L=
kit. If necessary, transfer the file to the

com pUter WhICh you wi ” use to Fleld Prog ram Skep 2. Make a Bluetooth connection from this computer to the module 4
Tooth pICk and enter the COM port used in the box on the right.

4 Hello World Bitstream

Power-up the Toothpick with the on-board
pushbutton held down. After initialization, the | JehZiem tetbdte. buton. e LEDswilsop fleshing
on-board LEDs will flash simultaneously.

Start running the Service Pack and connect from
the computer to the Toothpick using Bluetooth. o] [4D]

Enter the COM port used to connect to the []
Toothpick in the box provided.

Press the Update button. Programming takes about 10 seconds. When the progress bar is full, field
programming is complete.

Once loaded, the application will start executing immediately. To experiment with the application, follow these

steps:

1.
2.

Check the green LED is flashing regularly. This indicates the application is operating correctly.

Connect to Toothpick by creating a Bluetooth serial connection to it from a Windows PC. The red
LED will come on when the connection is made.

Start Windows HyperTerminal and create a connection using the COM port used to connect to
Toothpick. The baud rate settings will likely be ignored by the computer’s Bluetooth driver, so you can
keep the default settings.

Type characters into HyperTerminal. Usually nothing will happen except if an ‘H’ or a ‘W’ are typed.
the words ‘Hello’ or ‘World’ will then appear respectively.

Page 16 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Application Development in MPLAB

To examine the code for this application, you will need to be familiar with the Microchip Technology MPLAB
development environment and C18 compiler. The MPLAB development environment and C18 compiler must
be obtained separately from Microchip Technology Inc or one of its distributors.

A debugger or programmer will also be required. For product development, the Microchip ICD-2 in-circuit
debugger is recommended. For programming, the following connections must be made between the ICD2
debugger and Toothpick

Pin name on Toothpick Name in MicroChip’s Terminology
Vss Vss
Vdd Vdd
NMCLR NMCLR
INTO/PGC PGC
INT1/PGD PGD

The cable from the debugger to the Toothpick needs to be short. An adapter cable is available for connecting
directly from the ICD2 to a Toothpick plugged into a breadboard — see the Ordering Information section.

The following steps explain how to create the MPLAB project from scratch. You can alternatively load the
project HelloWorldBit._.mcw (found in the Development Kit) into MPLAB

1. Create a project named in MPLAB with the following characteristics:

Device PIC18F6722 /6722 /67J10

HS oscillator configuration

Watchdog timer off

Watchdog timer postscaler 1:128
Power-up timer on

Oscillator switch enabled

CCP2 Mux RE7

Table Write Protect 00200-03FFF enabled
Table Write Protect 04000-08FFF enabled
Table Write Protect 08000-0BFFF enabled
Table Write Protect 00000-001FF enabled
Large Code Model

Large Data Model

Multi-Bank Stack Model

The file Toothpick210.c will set these configuration bits for you.

If you forget any of these, the project will still compile, but it won't run correctly. Note, in particular, the
last three items may result in behavior that seems right at first but may later behave unexpectedly,
making debugging difficult. Please check these have been set before calling technical support.

2. Copy the following files from the Development Kit directory to your project directory and include them
in the project:

e Toothpick.h, the Toothpick Services header file in the development kit main directory.
e Toothpick210. lib, the Toothpick Services library in the development kit main directory.
e Toothpick210. Ikr, the Toothpick linker script in the development kit main directory.

The above files contain the information about Toothpick Services and are included in all applications.
They do not need to be modified from their original form.

Page 17 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

3. Open the file Toothpick210. cin development kit main directory and save it in your project directory.
This file allows you to customize the Toothpick Services for this specific application. In this case the
only modification required is to change the device name. Replace the line:

rom unsigned char pLocalName[LOCALNAMELEN] = "Toothpick 3.0";

with the line:

rom unsigned char pLocalName[LOCALNAMELEN] = **Hello World Bit";

Note the many other settings in the file: PIN codes, device classes, etc. You can modify the values
but it is very important that you do not modify the order or the size of these variable declarations. This
is because during Wireless Field Programming, your application code gets updated but the Toothpick
Services do not.

4. Open the file Main.c which is in the development kit main directory and save it in your project
directory with the name HelloWorldBit.c. This file is an ‘empty shell’ main application containing
all the functions you need to provide code for in your application. The ‘empty shell’ simply flashes
LEDs to indicate whether or not it is functioning correctly. Note how it contains a main function which
initializes and then runs in an infinite loop. The functions Highlnterrupt, Lowlnterrupt,
ErrorStatus, LMTEvent and FxPEvent are ‘callbacks’ which are called by Toothpick services
when certain events occur. For example, the Lowlnterrupt is called once per second with the
interrupt flag SWI_Tick set. Main.c clears the flag — if it did not, Toothpick would keep calling
LowInterrupt because it would assume that the interrupt had not yet been serviced.

5. We will trap the LMTE_Connected message and LMTE_Disonnect messages so we can light the
red LED when a remote device is connected. We will also note the LogicalChannel of the connection,
even though it should always be zero, since there is only one connection. Add the following code to
the LMTEvent callback function:

if (EventlD==LMTE_Connected)

// turn on red led during connection
LedRed = LedRedOn;
LogicalChannel = (unsigned char) pData2;

}

if (EventlD==LMTE_Disconnect)

// turn off red led after disconnection
LedRed = LedRedOff;

}

Note how the InSlaveMode ‘semaphore’ is set inside the interrupt and slave mode is re-entered from
the main loop. This is because functions which require a response from LinkMatik (such as
AwaitLMTOK() in this case) will only process that response in an interrupt. If you don'’t leave this
interrupt first, the response will never be processed. (See the section on Semaphores for more
details.)

6. Finally, add the code which sends the text Hello and World when the H and W characters are
received. Add the following lines at the beginning of the file before the main declaration:

rom unsigned char * szHello
rom unsigned char * szWorld

“"Hello\r\n";
"World\r\n";

When data is received from the remote device, it is put in the receive buffer and then the
LowlInterrupt callback is called with the flag SW1_LMTData set. Add the following code to process
the interrupt:

it (1sSWI(SWI_LMTData))
{

Page 18 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

unsigned char ch = *LMTRXCh;

// if the received character is an "H", say hello
if (ch=="h" || ch=="H")

{

}

// if the received character is an "W", say world
if (ch=="w" || ch=="W")

LMTTransmit(szHello, 0, 7, 255);

LMTTransmit(szWorld, O, 7, 255);

s

// remove the character from the receive buffer
LMTRxAdvanceCh;

ClearSWi(SWI_LMTData); // Clear interrupt flag
return;

}

This code transmits Hello or World as you would expect, but also does two other things. First, it calls
the macro LMTRxAdvanceCh which removes the character from the receive buffer after it has been
processed (or ignored). Second, it clears the software interrupt flag SWI_LMTData.

The application should now function correctly. Compile it and load it into Toothpick. By setting breakpoints in
a debugger, you can trap events to see the code being processed. Remember that if you are stopped at a
breakpoint, Toothpick will no longer process information coming from LinkMatik.

Page 19 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Hello World FlexiPanel Firmware Solution

Description

The Hello World FlexiPanel firmware solution is a simple tutorial to demonstrate how Toothpick can be used
and programmed for use with FlexiPanel User Interface services. It is assumed that you have completed the
Hello World Bitstream tutorial.

Hello World FlexiPanel is straightforward. It provides a user interface with a button and a message text area.
The message text will initially say Hello. When you press the button, the text toggles between Hello and
World.

Executing the Finished Application
(Throughout this section, use the four zeroes default PIN code 0000 if required.)

Hello World FlexiPanel is supplied as a Service Pack application which must be ‘Field Programmed’ into
Toothpick. This takes a few seconds and requires either a Windows PC or a Pocket PC with Bluetooth. The
procedure is as follows:

1. Select either the HelloWorldFxPWin.exe
(WindOWS) or Hel IoworldFXPPPC -exe Step 1: Reset the module with the pushbutton held down. The LEDs
(Pocket PC) service pack from the development | shoudflash smukaneousty.
kit. If necessary, transfer the file to the

com pUter WhICh you Wi ” use to Fleld Prog ram Step 2. Make a Bluetaath connection From this computer ta the module 4
TOOth ple and enter the COM part used in the box on the right.

A Hello World FxP

2. Power-up the Toothpick with the on-board _ _
pushbutton held down. After initialization, the | S massiings g, > e
on-board LEDs will flash simultaneously.

3. Start running the Service Pack and connect from
the computer to the Toothpick using Bluetooth.

4, Enter the COM port used to connect to the [)
Toothpick in the box provided.

About. .,] ’ Close]

5. Press the Update button. Programming takes about 10 seconds. When the progress bar is full, field
programming is complete.

Once loaded, the application will start executing immediately. To experiment with the application, follow these
steps:

5. Download from www.FlexiPanel.com FlexiPanel Client e E0 EEraE=so)
software for Windows, Pocket PC, Smartphone or |"esson st RENT A
Java phone. Install as required.

6. Check the green LED on Toothpick is flashing
regularly. This indicates the application is operating Hello World
correctly.

7. Connect to Toothpick from the FlexiPanel Client as
described in the instructions for the client. The red Change Text P
LED will come on when the connection is made and
the button and text box user interface will appear on
the FlexiPanel client.

8. Press the Change Text to change between the Hello

Page 20 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

and World texts. The application won’t win any beauty contests, but as a tutorial it must be kept
simple. Clickable image controls produce the ‘coolest’ user interfaces if you have the time to develop
appropriate graphics for the application.

User Interface Development in FlexiPanel Designer

Before developing the application in MPLAB, create the user interface in FlexiPanel Designer. It is good
practice to do this first as the result is a more user-friendly application. The following steps create the user

interface:

1. Download FlexiPanel Designer from www.FlexiPanel.com and start the application.

2. Inthe Target Device menu, set the target device to Toothpick.

3. Inthe Insert menu, select Insert Control > Insert Text. You have created a text control. By default it is
fixed, meaning the user cannot modify it, and has a maximum of 16 characters. In the properties list
box on the right, change the Control Properties > Data Storage type to RAM. This is because we will
be modifying the contents frequently and we don’t care if the value is lost if power is removed. In the
same properties list, change the Initial text to Hello. Note the variety of controls which are possible —
right up to sophisticated controls such as matrices (charts) and images.

4. In the Insert menu, select Insert Control > Insert Button. You have created a button control. In the
properties list box on the right, change the Control Properties > Title to Change Text. Note how the
controls you have created are displayed in the list in the central section of the screen. The Control
Name is how you will refer to controls in your application code; the ID value it creates is how
Toothpick services refers to controls internally.

&7 FlexiPanel Designer - Untitled
Elle Edit Vew TargetDevice Help
DEd &ax edSFEVAR = E= ++ BEE BTE ¢
Control Name Type Descripkion his] FlexiPanel Server Properties A
Textl Text "Hella”, Fixed, 16 character(s) (ROMO1:0047, RAM:0010) 0001 _ﬁ"ﬂe‘ Properties
Change Text Button "Change Text" (ROMOL:0035) ooz es
‘Windows PC Properties ~
Control 0002
Irvisible: Mo |
Mewy Dislog Mo
Righit-to-left Mo
Start group Mo
ChangaTe)d
Title .
The title of the control
Ready
5. The controls have been ‘logically’ defined. If you stopped at this stage, the controls would be perfectly

useable on any FlexiPanel client device. However, you may wish to improve the layout on certain
platforms such as Windows and Pocket PC. In the properties list box on the right, select Pocket PC
properties. The screen appearance will change to show the layout of controls of the Pocket PC. Drag
the controls as shown in the following diagrams. (Click on the + to move a control and the arrow to
resize it.)

Page 21 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

8.

& FlaxiPanal Desigeer - Unfilled ! FlaaiPanal Desigeer - Untitled
B (S Yow [aget Devies Hole Bin (S Yew [wget Devos Heo
O Bx @#A0EEDED@D: ®E AEE BAE8 Dl hx SAOfBEHAETm@D: W&

“
Crange Text

Niser ekt lond Yes
Niser moity s Yes

Before After

The Prev, Next and First navigations are not needed because all the controls fit in a single screen.
That is why they have been dragged off-screen and thus out of view. The other controls have been
repositioned.

The text control is large so the font size need so be increased. Select the control by clicking on it so
that it turns blue. Then in the properties list on the right, make the following changes / checks:

Font bold Yes

Font size 40

Height Check it’s at least 51
Justify Center

Show Border Yes

Width Check it's at least 181

In the properties list box on the right, select Windows properties and then set the Screen Height
property to 300 and the Screen Width property to 240. Drag the controls and modify the text control
as before. (There are no navigation or close buttons in the Windows Client.)

A FlaxiPanel Designes - Untitled A FlaxiPanel Designes - Untitled
Bl Ed ven [aysOmie teb Bl B ver DegnOnwe teb
D SO EEDEDE W@ EEO D b x Fad0EEDEDE S 8@ OE@E
FlesiPancd Soaver Propeilios =

Prgemamey 0

Before After

In the properties list box on the right, select FlexiPanel Server properties and then set the Device
Name to Hello World FxP. Note the Force Layout option. Keep this set to Yes during development
so that FlexiPanel Clients always read the latest user interface layout information. Change it to No for
production to stop FlexiPanel Designer appending a unique number to the end of the Device Name.
(It has to do this in order to tell the Clients to reload user interface data.)

Page 22 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

9. Save the file as Hel loWor ldFxPRes . FxP in the project directory for this application. The Res at the
end of the filename is generally used to indicate that it, and the files it creates, contain user interface
resources.

10. In the Target Device menu, select Create C Code... FlexiPanel Designer will create a
HelloWor1dRes_h header file and a Hel loWor 1dRes. c source code file which you should save in
the project directory. The C code contains the user interface data to be stored in Toothpick program
memory. (You may need to change the #include “Toothpick.h” path if the file is not in the
same directory as your project.) The header file contains computer-generated macros to make it
easier to access the controls from your application code.

11. The user interface is now complete. Note that one of the Target Devices you can select is Simulation.
This allows you to test user interfaces directly from within FlexiPanel Designer. The aim of this tutorial
has not been to produce the most aesthetically pleasing user interface, and you can see there is
plenty of scope for improvement, particularly if image controls are used.

Application Development in MPLAB

The following steps explain how to create the MPLAB project from scratch. You can alternatively simply load
the project HelloWorIdBit.mcw (found in the Development Kit) into MPLAB

1. Create a project named in MPLAB with the following characteristics:

Device PIC18F6722 / 6722 / 67J10

HS oscillator configuration

Watchdog timer off

Watchdog timer postscaler 1:128
Power-up timer on

Oscillator switch enabled

CCP2 Mux RE7

Table Write Protect 00200-03FFF enabled
Table Write Protect 04000-08FFF enabled
Table Write Protect 08000-0BFFF enabled
Table Write Protect 00000-001FF enabled
Large Code Model

Large Data Model

Multi-Bank Stack Model

If you forget any of these, the project will still compile, but it won't run correctly. Note, in particular, the
last three items may result in behavior that seems right at first but may later behave unexpectedly,
making debugging difficult. Please check these have been set before calling technical support.

2. Copy the following files from the Development Kit directory to your project directory and include them
in the project:

e Toothpick.h, the Toothpick Services header file in the development kit main directory.
e Toothpick210. lib, the Toothpick Services library in the development kit main directory.
e Toothpick210. Ikr, the Toothpick linker script in the development kit main directory.

The above files contain the information about Toothpick Services and are included in all applications.
They do not need to be modified from their original form.

3. Also include in the project the files HelloWorldRes.h and HelloWorldRes.c, generated by
FlexiPanel Designer. The C code contains the user interface data to be stored in Toothpick program
memory. The header file contains computer-generated macros to make it easier to access the
controls from your application code.

Page 23 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

4. Open the file Toothpick210.cin the development kit main directory and save it in your project
directory. This file allows you to customize the Toothpick Services for this specific application. In this
case the only modification required is to change the device name. At the beginning of the file,
#include the file HelloWorldRes.h created by FlexiPanel Designer. The code will then begin as
follows:

#define __ Toothpick_c__
#include "Toothpick.h"
#include <pl18f6722 / 6722 / 67J10.h>

// 1T programming a FlexiPanel Ul from FlexiPanel Designer using data files,
// include the header file Designer creates, (comment out otherwise)
#include "HelloWorldRes._h"

5. Open the file Main.c development kit main directory and save it in your project directory with the
name HelloWorldFxP.c. This file is an ‘empty shell’ main application containing all the functions
you need to provide code for in your application. At the beginning of the file, #include the file
HelloWorldRes.h created by FlexiPanel Designer. Also create static text variables for the words
“Hello and World, so that the code begins as follows:

#include "Toothpick.h"
#include <pl8f6722 / 6722 / 67J10.h>
#include "HelloWorldRes.h"

rom unsigned char * szHello = "Hello\r\n";
rom unsigned char * szWorld = "World\r\n";

6. During initialization, the FlexiPanel User Interface server must be started. Unlike regular LinkMatik
slave mode, this does not need to be re-started each time a device disconnects so the code is simpler.
Place the following lines immediately prior to the start of the infinite look in the main function:

FxPCommand(FxPC_Start, 0, 0); // Start FlexiPanel service

7. Events that happen to the FlexiPanel server are reported in the FxPEvent callback. Add the
following lines to the callback function so that the red LED comes on when a verified client connects:

ifT (EventlD==FxPE_Connected)

// turn off red led during connection
LedRed = LedRedOn;

}
it (EventlD==FxPE_Disconnect)

// turn off red led after disconnection
LedRed = LedRedOff;

}

8. Finally, code must be added to process the event when the ChangeText button is pressed. Add the
following lines to the callback function:

// Check for control events
ifT (EventlD==FxPE_ClIntUpdate)

// 1If the button was pressed...
if (*((unsigned short*) pData) == ID_Change_Text_2)
{

// 1s the current text value Hello or World?
if (pTextl_1[0] == "H")

// set the text value to World and update the client
SetUp_Textl_1(szWorld, 0) ;

}

else

{

Page 24 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

// set the text value to Hello and update the client
SetUp_Textl 1(szHello, 0) ;
b
3
¥

Many macros from Hel loWorldRes . h were used in this last piece of code. The macros generated
will depend on the control types and where the data is stored. Inspect the file Hel loWorldRes.h to
see the macros available for the controls you have created. In particular, note the following:

e The FxPE_CIntUpdate event signals that a control has been modified by the user.

e The ID_Change_Text_2 ID value, defined in Hel loWorldRes.h, is used to identify that the
Change Text button has been modified. The _xxx suffix (_2 in this case) is added to ensure all
control ID definitions are unique even if their title is the same. The ID value definitions such as
ID_Change_Text_2 will not change (so long as you do not change the control title), although
the underlying ID values will as you add and remove controls from the user interface.

e The pTextl_1 pointer, defined in Hel loWor ldRes . h, may be used to access the control data.
In this case, because the pointer is a RAM pointer, you can use it for reading or writing the
value. If it was a ROM pointer, you could use it for reading only. If the control was stored in
external memory, no pointer would be defined at all. Set_ and Get_ macros are defined for all
controls and you can always access the control values using those macros.

e The SetUp_Textl_1 macro, defined in HelloWorldRes.h, is used to set the value of the
control and then send the updated value to the remote client. It has two arguments - the first is
if the source data is a ROM pointer, the second is if the source data is a RAM pointer. The
unused argument must be set to zero.

The application should now function correctly. Compile it and load it into Toothpick. By setting breakpoints in
a debugger, you can trap events to see the code being processed. Remember that if you are stopped at a
breakpoint, Toothpick will no longer process information coming from LinkMatik. With FlexiPanel service in
operation, you may wish to turn off pings if they are enabled on the Client to stop it sending ping messages
while Toothpick is at a breakpoint.

Page 25 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Toothpick Diagnostic Firmware Solution

This section assumes you have followed the Hello World Firmware Solution tutorials.
Description

The Toothpick Diagnostic firmware solution is what we use to re-test the high-level Toothpick Services when
we make changes to them. The source code also provides good examples of how to use the Toothpick
Services and FlexiPanel controls.

Toothpick Diagnostic is a multi-dialog application, with each dialog testing a different set of functions. We
have included some ‘placeholder’ dialog pages for services we expect to add in product updates. For the
moment, these dialogs are not functional.

Executing the Finished Application

Toothpick Diagnostic is supplied as a Service Pack application which must be ‘Field Programmed’ into
Toothpick. This takes a few seconds and requires either a Windows PC or a Pocket PC with Bluetooth. The
procedure is as follows:

1. Select either the ToothpickTestWin.exe
(WindOWS) or TOOthp i CkTeStPPC -exe Step 1: Reset the module with the pushbutton held down, The LEDs
(Pocket PC) service pack from the development | shouidfiash simukaneausty.
kit. If necessary, transfer the file to the

com pUter WhICh you Wi ” use to Fleld Prog ram Step 2. Make a Blustooth connection from this computer ta the module 4
TOOth p|Ck and enter the COM port used in the box on the right.,

A ToothPIC Test

2. Power-up the Toothpick with the on-board
TTPRT . B ! date. .. b . Th ill Flashi
pushbutton held down. After initialization, the | s whe cammmi & i =oF feshing
on-board LEDs will flash simultaneously.

3. Start running the Service Pack and connect from
the computer to the Toothpick using Bluetooth. o | [cee]

4. Enter the COM port used to connect to the []
Toothpick in the box provided.

5. Press the Update button. Programming takes about 30 seconds. When the progress bar is full, field
programming is complete.

Once loaded, the application will start executing immediately. To experiment with the application, follow these
steps:

& ToothPIC Test72 E)EX] § & Toothpic Test72 (=113}

Mavigation Zettings Mavigation Settings

6. If you have not already done so, download from
www.FlexiPanel.com FlexiPanel Client software for
Windows, Pocket PC, Smartphone or Java phone.
Install as required.

Choose test Test Real Time

Real time clock 12:01:18, Fri Apr 01, 2005
. . . Analog to digital
7. Check the green LED on Toothpick is flashing | [oigitalouuts O
regularly. This indicates the application is operating | |pasi b, 01042005 v Frl
Correctly. Birsﬁet!;puts Wyestern Europe DST -
8. Connect to Toothpick from the FlexiPanel Client as | |f ! an Compare tests LT
described in the instructions for the client. The red | |sPitest [Refresh SecFrac value |
LED will come on when the connection is made and | l==20Puerbuton test -
the Choose Test Dialog will appear on the || rutest || ciose |

FlexiPanel client. The controls are transmitted
before the formatting information, so the first time you connect, the controls may look a bit odd for a
couple of seconds.

9. Select Real Time Clock from the Choose Test list and press Run Test. You can set the real time
Page 26 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

clock time and date using the editable date-time controls. When you do so, the fixed time control and
the day-of-week calculation will be updated. You can also change the Daylight Savings Time rules

and, if the appropriate time is set, watch the date Epu———=;;= EIEE N & rootpic Tes72

and time advance or retard. (See the Real Time [uwigain setings Havigation_ 5etings

Clock section of the Toothpick Services Reference

for exact details of when the clock changes.) The Test Ato D Test Digital Outputs

Refresh SecFrac button and the modifiable number

control below it allow you to read and write the 0141V

1/32768ts of a second. Press End Test when you | mm——=

have finished this test and each of the following tests. ¥
10. Select Analog to Digital from the Choose Test list | [ang

and press Run Test. Select which input to measure | |47

and see the result in the voltage display. If the pins | [ang !

are unconnected, you will be measuring stray |3 L [e |

voltages which are liable to fluctuate.

11. Make sure the I/O pins are unconnected. Then [ERGUHISEEES GalpothRIC eI 2
select Test Digital Outputs from the Choose Test list |~ S e
and press Run Test. Press the latching buttons to
set the outputs high or low and use a multimeter to
check the voltages. (SDA and SDO will not work | /AT --

Test Digital Inputs Test Parallel Outputs

PA7 ~ 40K

because these pins are configured for [2C.) S5 J— --

12. Select Test Digital Inputs from the Choose Test list | rspo . T PBS ~ 30K
and press Run Test. A red background color | ... (AN EANET
indicates the input is ‘high’ and gray indicates the . ANT - INTO - PC5 v 0[oK
input is ‘low’. If the pins are unconnected, you will CCP1

be measuring stray voltages which will fluctuate. AN

13. Make sure the I/O pins are unconnected. Then
select Test Parallel Outputs from the Choose Test [l £ ToothPIC Test72 EIEX
list and press Run Test. These are the same as the | ™" =™ L
regular digital outputs except the values change
simultaneously. This is useful when transmitting | = 1est Parallelinputs | | Test button, LEDs

parallel data or if you need to tie several outputs Press madule bution for messags
together to drive loads greater than 25mA. PAT 0 [Tfis is my message |
Question v
14. Select Test Parallel Inputs from the Choose Test list | [PBS ~ 3 Retry, Cancel 3
and press Run Test. These are the same as the Button pressed: 1
regular digital inputs except the values are | PC5 v 0 D

measured simultaneously. FIRed Led

End Test
End Test

15. Select LED + Pushbutton Test from the Choose Test
list and press Run Test. You can control the LEDs
and make various message boxes appear by [RCTEREEE (B | i roothpic Tesi72 A=
pressing the TOOthpICk pushbutton_ Mavigation Settings Mavigation Settings

16. Select Memory test from the Choose Test list and Memory test Silder & Progress Bar
press Run Test. Read and write to memory. Note Fligh ROM locatinFoo0 3
that if no external memory is connected, you will get | [SoLVae JFF__| Sel value |
a memory failure error if you try and read or write to [Ge'?\m;c]’fft'°”022?vaue | —
it. Also, don’t write to a memory location unless you

EE location |000

are sure that Toothpick isn’t using it! [Get valus JFF

Set Value |
Ext location |000000
17. Select Slider & Progress Bar from the Choose Test | [Get vaus]| ,[Sa\/Tta]‘
list and press Run Test. When you move the slider, =
the progress bar moves. These controls are not

available on all clients and you may find that all you

Page 27 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

see are a modifiable and a non-modifiable number control instead.

18. Select Miscellaneous Controls from the Choose Test list and press Run Test. If
you press Go to URL and the computer you are using is web-enabled, you will

19.

20.

21.

22.

23.

24.

25.

be taken to www.FlexiPanel.com.

If you press Display File, Toothpick will

upload two web pages stored internally — all you need is a web browser to see
these pages. However, If you have many web pages, you may need to add

external memory.

Two identical image controls with the FlexiPanel logo
are displayed. The first on the left displays a message
when you click on it. The second uses ‘overlay’
storage type, so it actually uses the same source data
as the other image control. This is very useful if you
use the same image in several dialogs of your user
interface. If you have many images, you may need to
add external memory.

Enter the password 1234 in the password control. This
makes the List, XY, Labels and Time section controls
appear.

Press List Section to see the List-style matrix control
depicted as a table. This is useful for matrix data
which doesn’t really have an X-axis. Press List Section
again to return to the main Miscellaneous Controls
dialog (and for the other matrix controls, too.)

Press List Section to see the List style control depicted
as a table. This is useful for matrix data which doesn’t
really have an X-axis. Press List Section again to
return to the main Miscellaneous Controls dialog (and
for the other matrix controls, too.).

Press Labels Section to see the Labels matrix control
depicted as a column chart. This is useful for matrix
data which has a category-style X-axis. On some
clients, you can click on the chart to zoom it up, see a
table of values or save the data to a file.

Press XY Section to see the XY style control depicted
as a points chart. This is useful for matrix data which
has a numerical X-axis. On some clients, you can click
on the chart to zoom it up, see a table of values or
save the data to a file.

) Washing Machine Instruction Manual - Netscape

Z ToothPIC Test72

Mavigation Settings

EEX

Miscellaneous Ctls
[Go o URL H Display File]

Enter the password 1234
[Log Cut]

I List Section H KY Section]

ILabe\s Sect\on” Time Section]

« Ble L& Yew Go [ockmaks Jock Wedww e

Q O O QO FrErErwww |) <5, 3
L B GMal BAN G Home G Rodo] Netsoape O Search | PlBcokmarks
) | % Washing Machie Instruction Marusl 1 (%]
‘Washing Machine Instruction Manual
S22 or [[oe =y

Z ToothPIC Test72

Mavigation Settings

EEX

Z ToothPIC Test72

Mavigation Settings

EEX

I List Section l

Col 1 Caol 2 Col2
1 2 3
2 4 53
5} § 9
4 g 12
S 10 15
6 12 18
7 14 21
8 16 24
9 18 27
10 20 20

I Labels Section]

Col 1

Z ToothPIC Test72

Mavigation Settings

Z ToothPIC Test72

Mavigation Settings

EEX

| XY Section |

I Time Section]

Col 1

X Axis

Col 1

X Axis

Press Time Section to see the Date-Time matrix control depicted as a line chart. This is useful for
matrix data which has a time-style X-axis. Note how a new value is appended to the chart every five
seconds. On some clients, you can click on the chart to zoom it up, see a table of values or save the

data to a file.

Page 28 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

User Interface Development in FlexiPanel Designer

If you open the file ToothpickTestRes.FxP in FlexiPanel Designer, you will see that this user interface has
over 160 controls spread over 15 dialogs. Note how all the dialogs are all in one list and the boundary
between dialogs is indicated by the indentation of the control name in the list. A new dialog is created simply
by creating the first control in the dialog and then specifying Yes for its New Dialog property.

Note also the properties list for the image control as depicted in the graphic below. The graphic, which must
be in GIF format, is loaded in by double-clicking on the Image Data control. In the individual client layout
settings, you can choose to stretch or tile it as required. This is useful for using images for backgrounds, etc.
The Data Storage is set to Overlay and the Data Overlay Control is set to the other image control. This
means that the control will use the same storage location as the other image control.

FlexiPanel Designer - D:AVCPAbluetronigiToothPIC SDKYToothPICTestyToothPICTestRes. FxP

File Edit Wiew Target Device Help
Nl X fdABEVAE fw:Ew +4 EEE BSE 7

Cortral Mame Type Description I #| |FlexiPanel Server Properties ~
EELac Text "000", Modifiable, 4 character(s) (ROMO1:008F, RAM:0004) opop (Target Properties
et Yalue Butkan "iaek Value" (RIOMO1:0057) 0DoE
EEVal Text ™ Modifiable, 3 character(s) (ROMO1:008E, RAM:0003) ooop |Pecket PC Properties
Set Yalue Button "Set Value" (ROMO1:008F) opig, WAndows PC Properties b
Ext loc kext Text "Ext location”, Fized, 16 characker(s) (ROMO1:00C3) oot Control 0FOF
Extloc Text "000000°, Modifisble, 7 character(s) (ROMOL:0093, RAM:0007) oDz Color Defaut ~
et value Button "zet Yalue" (ROMO1:0057) op13
Extval Text "™, Maodifiable, 3 character{s) (ROMO1:008F, RAM: 0003} oo14
Set Yalue Button "Set Walue" (ROMO1:0057) aDis
End Test Buttan "End Test" (ROMO1:008E, RAM:0001) abie

SliderProgress Text "Silder & Progress Bar", Fixed, 33 character(s) (ROMO1:00DE) 0EO1 Data Qverlay Cort FlexiPanelLoga

Slider humber "S%%", Fixed point, Min-10, Max 10 (ROMO1:00A, RAM:0004) QEDZ

Progress Mumber “" Fized point, Min-10, Max 10 (ROMOL:00BE) DECS : Qverlay .

End Test Bukkan "End Test" (ROMOL:003E, RAM:0001) OEO4 Dizabled Mo
Tlischrl Text "Miscellaneous CHs", Fixed, 33 character{s) (ROMO1:00D8) aF01 Endl group Mo
Go ko URL Elob "o to URL", htkp: v, Flexipanel,com (ROMOL:00AA) QF0Z \
Display File Files HTML, 2 file(s): WebPage, htm, LinkedPage, htm (ROMO1:033D) oFgz | Mmege Data 588 bytes GIF (30:
PassText Text "Enter the password 1234", Fixed, 24 character(s) (ROMO1:0048) oFo4 | Inwisible Hla
Password Password 4 character(s), Fixed, Close on disconnect (ROMO1:0111, RAM:Q00L) OF0S Megzage on click Yes
List Section Section "List Section”, 1 child contrals, Close on disconnect (ROMO1:00D2, RAM:0001) OF0&
Lisk Matrizx Matrix "List Matrix" 10 R 2 3 C, List skyvle: Col 1, Col 2, Col3 (ROMO1:0001, RAM:007C) aFa7]
%¥ Section Section " Section”, 1 child contrals, Close on disconnect (ROMOL:0000, RAM:0001) oFps | Mew Dislog o
¥ Matrix Sec.., Matrix "Y Matrix Section” 10 Rx 2 C, ¥¥ style: Cal 1, Col2 (ROMD1:00F1, RAM:0054) OF09 Right-to-left Mo
Labels Section Section "Labels Section”, 1 child controls, Close on disconnect (ROMO1:0004, RARM:Q001) OF0A Start group Mo
Labels Matrix Iatrix "Labels Matrix" 6 R x 1 C, Labels style: Col 1 {ROMO1:00CE, RAM:O01C) OF0E i
Time Seckion Section "Tirme Section”, 1 child contrals, Close on disconnect (ROMO1:0002, RAM:0001) aFoC Data Storage
Time Matrix Matrix "Time Matrix" SO R x 1 C, DateTime style: Col 1 (ROMOL:A0EA, RAM:0OCC) OF0C \here the control data iz stored. RAh
FlexiPanellogo Image "FlexiPanellogn”, 658 byte GIF (ROMOL:0345) OFOE is lost after poweer-off. EXT requires

a,,. “ImageCverlayTest", 683 byte GIF (ROMO1:0097) external memory. Overlay uses same

ImagePresse... Message "Image button pressed"”, Moicon, OK {no replyd, 21 character{s) (ROMO1:0055) aF10 location &s another control as specified
End Test Buttan "End Test" (ROMO1:007E, RAM:0001) OF11 by Storage Qverlay Cantral propety.

< >

JReady

Application Development in MPLAB

The application code for the Toothpick Diagnostic firmware solution is extensive and the entire project is
available for inspection in the development kit. The most important files to note are the application source
code file ToothpickTest.c and the Designer-generated macros header file ToothpickTestRes.h. The
key features of the source code are discussed below.

Initialization
When the application starts, the external memory is initialized, the FlexiPanel server is initialized and the list,

labels and XY matrix controls are initialized with data. Note how the pRowCounter_ pointer macro is used to
set the number of rows of the matrix which are displayed.

Page 29 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Main Program Loop

In the main program loop, the green LED is flashed every 250ms, provided the LED test is not running. If the
test to be run is one of the analog or digital input tests, the input value is read and the relevant control is
updated.

High Interrupt

No high priority interrupts are expected nor provided for.

Low Interrupt

Two types of low priority interrupts are expected: when the clock ticks and when the pushbutton is pressed.

Every second, a SWI_Tick software interrupt will be received. When it is, the controls in the Real Time Clock
dialog are updated. Note that the DT_Edit_8 modifiable Date-Time control does not require updating
because in FlexiPanel Designer it was specified as ‘linked’ to the Real Time Clock. This means that Toothpick
automatically updates it when the clock ticks and conversely updates the Real Time Clock if the user modifies
the control. Every five seconds, a row of data is appended to the time matrix control. Note how the
FxPC_PartUpdate command is used rather than the FXPC_Update command to send the new data to the
client. This saves Toothpick from having to resend the entire matrix — it just sends the new row of data
instead.

When the pushbutton is pressed, the appropriate message box is displayed. If a response is expected, this is
processed elsewhere — in the FXPEvent callback.

In both cases, the final step is to clear the interrupt flag. If the flag is cleared earlier, it allows another low
priority interrupt to occur. While this is possible, great care needs to be exercised to avoid stack overflow.

ErrorStatus and LMTEvent

No errors are expected. However, it is always possible that Toothpick will enter an unanticipated state and
generate an error. During development, it is best to set a breakpoint so we can inspect what caused the error.
For product release, it is obviously better to enter a failsafe state and/or reset.

FlexiPanel Server Events

If a client connects or disconnects, the red LED is updated accordingly. If the close button is pressed,
Toothpick disconnects from the client.

If the Run Test button is pressed, the FXPC_SetDialog command is used to show the appropriate dialog to
the test and the analog or digital 1/0 pins and pushbutton interrupt are configured as needed. |If the test
requires sampling the inputs regularly, the MSF_TestsRunning semaphore is raised so that the tests are run
in the main program loop. If any End Test button is pressed, Toothpick returns to the Choose Test dialog.

Real Time Clock Dialog: If the date is changed, Toothpick recalculates the day of week; if the daylight savings
time or summer time controls are changed, the real time clock’s daylight savings time event is updated; if the
seconds fraction controls are operated, Toothpick retrieves or sets the time as appropriate.

Digital Outputs / Parallel Outputs / LED Test Dialogs: If any of the controls are changed, the outputs are
changed accordingly.

Memory test: If any of the Set Value or Get Value buttons are pressed, the memory location is retrieved or
modified.

Slider & progress test: If the slider control is adjusted, the progress control is updated. Note that the value
does not need to be copied from the slider to the progress control since they use the same storage locations.

Page 30 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Miscellaneous Ctls: If the image control is clicked, a message is displayed. Note that the password and
section controls are handled automatically by Toothpick Services.

Finally, if a message box was created by pressing the Toothpick button, a FXPE_MsgResp may be generated
when one of its response buttons is pressed. The button number is displayed in a number control.

Page 31 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

DARC-I Firmware Solution

The DARC-I Firmware Solution allows Toothpick to operate as a standalone Data Acquisition and Remote
Control (DARC) device. It is controlled by a remote device, using the Bluetooth link, using a simple set of
serial commands. No development is required on the Toothpick.

Description

DARC-I is an example of a Data Acquisition and Remote Control application using Toothpick. /O is
configured from the Remote Device. The basic commands, which may be sent in binary or ASCII
hexadecimal format, are:

Command Summary

Command

Effect

Reset

Disconnects and resets

Configure DARC-I

Configures DARC-I (security, log rates, PWM, A/D, clock...)

Configure 1/0O

Configures I/0O

Set I/O Sets an 1/0O value

Get I/0 Requests an I/O value

Read Memory Reads from memory locations
Write Memory Writes to memory locations

Stream Data

Streams data samples to remote device

Get Data Frame
Log Data

Stores a sequence of data samples in memory at higher speeds
Logs data records to memory at specific times.

The DARC-I Firmware Solution will be sufficient for basic data acquisition, logging and remote control. For
customized applications, the DARC-I Firmware Solution may be used as proof-of-principle. Later, the C
source code can be modified to achieve specific goals such as power saving modes or faster data acquisition.
Very often the changes required for customizing DARC-I are simple and it will probably make more sense for
FlexiPanel Ltd to make these changes for you if you are not familiar with the MPLAB development
environment.

Executing the Evaluation Version

The DARC-I Evaluation Version is a fully documented commercial product. The documentation is included in
the development kit as the file DARC-1 .pdf. Follow the instructions in that documentation to execute and
explore the product.

The documentation is of interest in itself because it gives an indication of important elements which should be
included in commercial products using DARC-I. In particular, note:

e Patents apply and/or pending — all products incorporating Toothpick are implicitly protected by
FlexiPanel's patents and patent applications.

¢ Field-Programming Instructions — demonstrating this advanced feature of the product which relieves
you of the need to manage multiple product lines each with different firmware.

e Antenna position guidance.

e Current requirements — since peak current requirement is relatively high.

e FCC/CE/IC Modular Approval — device labeling requirements.

Customization in MPLAB

If you wish to customize the DARC-I module, you will need to modify it using the MPLAB development
environment. If you have not already done so, please study the Hello World applications.

Page 32 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

The application code for the Toothpick DARC-I firmware solution is extensive and the entire project is
available for inspection in the development kit. The most important file to note is the application source code
file DARC-1.c. The key features of the source code are discussed below.

Static Declarations

ROM and RAM spaces provided for the user are reserved using static variables such as pFxPRAMOOO and
p010000. This prevents the linker from using them for other purposes. The sample record array record is
declared statically for storing one record of data since this is faster than allocating it dynamically on the stack.

Initialization

When the application starts, settings are read from ROM and static variables are initialized. Then external
memory and security settings are enabled as required. Finally, both LEDs are flashed to provide visual
confirmation that the module is running.

Main Program Loop

The main program loop does nothing except put the LinkMatik module into slave mode if the application has
just initialized or if a remote device disconnects.

High Interrupt

No high priority interrupts are provided for. The only high priority interrupt expected is data from LinkMatik,
and Toothpick Services manages that automatically.

Low Interrupt
Several types of low priority interrupts are expected:

¢ When timer 4 overflows, which it may be configured to do every 200ps. .
¢ When the real time clock ticks each second.

e When the LinkMatik receive buffer has received a new byte.

¢ When a software interrupt is raised to indicate that a complete command is awaiting processing.

When timer 4 overflows, the interrupt flag is immediately cleared. This allows the timer to interrupt again
when the next overflow occurs. This is not normally regarded as good practice since it is difficult to plan for
multiple interrupts making the stack overflow. However, in this case, we next detect whether a second
interrupt has been received while the previous one is still being processed; if it has, the ‘overflow’ error
semaphore is set and the timer is disabled. The interrupt processing routine then decrements a countdown
clock and, when it reaches zero, takes samples and stores or streams the data as necessary.

Every second, a SWI_Tick software interrupt will be received. When it is, the real time clock is compared to
the LogRate variable and, if due, a sample is taken and stored in memory.

When the LinkMatik receive buffer is updated, DARC-I first checks whether streaming is in process. Ifitis, it
will be interpreted as the instruction to stop streaming. Otherwise, it is interpreted as a partial or complete
command and is inspected for obvious errors. If there are any, or all the bytes of a command have been
received, a software interrupt is raised to process the command.

When the software interrupt is raised indicating that a complete command is awaiting processing, it is
processed as appropriate.

ErrorStatus

No errors are expected. If an error occurs, the auxiliary function InternalError () performs whatever task
is supposed to be performed in the event of an error.

Page 33 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

LMTEvent

Errors are handled in the same way as for ErrorStatus. If a device connects, the initialization message is
sent. If a device disconnects a flag is raised to tell the main program loop to re-enter LinkMatik slave mode.

FlexiPanel Server Events

The FlexiPanel User Interface server is not used.
Command Processing Functions

7 command processing functions are provided:

e ConFTigbarcCmd() for processing Configure DARC-I commands.

e ConFigloCmd() for processing Configure I/O commands.

e Setl0Cmd() for processing Set I/O commands.

o GetlOCmd() for processing Get I/O commands.

o GetMemCmd() for processing Get Memory commands.

o GetMemCmd() for processing Set Memory commands.

o StreamFrameCmd() for processing Stream and Frame commands.

While these functions are extensive, their functions are self-evident.
Auxiliary Functions
Auxiliary functions are provided for:

Signaling an error.

Sending responses to the remote device in binary or ASCII.

Converting from ASCII to binary and vice versa.

Including and excluding inputs from the sample record set.

Analog to digital conversion.

Deciding where to store the next sample record in memory.

e Measuring inputs and storing the result in the sample record array record.

Page 34 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

DARC-II Firmware Solution

The DARC-II Firmware Solution allows Toothpick to operate as a standalone Data Acquisition and Remote
Control (DARC) module. It is controlled by a remote device running FlexiPanel Client software, using the
Bluetooth link. By using FlexiPanel Client software, no development on the remote device is required.

Description

DARC-II is an example of a Data Acquisition and Remote Control application using Toothpick. 1/O and user
interface are configured using FlexiPanel Designer. This configuration is then programmed into DARC-II
direct from FlexiPanel Designer using Wireless Field Programming. The 1/O pins may be ‘tied’ to controls as

follows:

Text control driven by digital input — has separate text strings for ‘low’ and ‘high’.

Number control driven by analog / parallel input — equals A to D value or parallel data.
Date-time matrix driven by analog / parallel input — appends time-stamped value onto matrix.
Digital output driven by button / image — pulses high for 50ms when pressed.

Digital output driven by latch — on or off according to state of the latch.

Parallel output driven by number / list control — parallel data represents number / selection.
PWM output driven by number / list control — duty cycle represents number / selection.

The DARC-II Firmware Solution will be sufficient for basic data acquisition, logging and remote control. For
customized applications, the freestanding DARC-II Firmware Solution may be used as proof-of-principle.
Later, the C source code can be modified to achieve specific goals. Very often the changes required for
customizing DARC-II are simple and it will probably make more sense for FlexiPanel Ltd to make these
changes for you if you are not familiar with the MPLAB development environment.

Executing the Evaluation Version

The DARC-II Evaluation Version demonstrates some of the controls and 1/O available on the module:

& DARC-1I Test7C ' Set the duty cycle of
State of digital inputs Navigation Settings L1 outputs CCP1, CCP2
AN4 — AN7. Close and CCP3
(in eval, blank = low)
I 2L [B - =
Set digital outputs
Analog input ANO ok TxD, SDO, SCL and
logged every 2 secs. | 15 o SDA using image,
Click to zoom in. z CJCPB p button and latch
=4 » controls
Analog inputs AN1 %
~1 L W Tio - Set parallel digital

to AN3 depicted as

progress bars. outputs AN11, AN10

and AN9 using the list
control

Parallel input CCP5, [~ =—AN3\ six " Jlreoa
FC3) n- -
il Hm Set the clock.

The DARC-II Evaluation Version is a fully documented commercial product. The documentation is included in
the development kit as the file DARC-11.pdf. Follow the instructions in that documentation to execute and

explore the product.

Page 35 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

The documentation is of interest in itself because it gives an indication of important elements which should be
included in commercial products using DARC-II. In particular, note:

¢ Patents apply and/or pending — all products incorporating Toothpick are implicitly protected by
FlexiPanel’s patents and patent applications.

¢ Field-Programming Instructions — demonstrating this advanced feature of the product which relieves
you of the need to manage multiple product lines each with different firmware.

¢ Antenna position guidance.

¢ Current requirements — since peak current requirement is relatively high.

e FCC/CE/IC Modular Approval — device labeling requirements.

Customization in MPLAB
The standard DARC-II Firmware Solution can do the following:

e Configure the I/O.
¢ Provide a user interface.
e Link the user interface controls directly to the 1/O.

If you wish to customize the DARC-II module further, you will need to use the MPLAB development
environment. If you have not already done so, please study the Hello World applications.

Migrating to MPLAB

The following instructions allow you to migrate the Evaluation Application solution to the MPLAB development
environment.

1. The application code for the DARC-II firmware solution is extensive and the entire project is in the
development kit. In MPLAB, open the project DARC-11_mcw. This relevant files in the project are:

DARC-11 .c — Main application code which you will be customizing.

DARCI 1Config.c — A data structure containing the default I/O configuration.

DARCI IDefaultRes. c — Default user interface code which just contains the text ‘DARC-II’.
DARCI IDefaul tRes . h — Default user interface macros.

Toothpick.h — General Toothpick macros.

When you configure DARC-II wirelessly using FlexiPanel Designer, it overwrites the data in
DARCI 1Config.c and DARCI IDefaul tRes. c with the configuration you specify.

2. If the files were compiled as they are, the user interface would be the default user interface, which just
contains the text ‘DARC-II'. To replace this with the DARCI1TestRes.FxP user interface in the
evaluation version example:

e Open DARCIITestRes.FxP in FlexiPanel Designer.

¢ In the Target Device menu, select Toothpick.

e In the Target Device menu, select Create C Code. The C files DARCIITestRes.c and
DARCI ITestRes.h are created.

e Remove DARCI IDefaultRes.c and DARCI IDefaul tRes. h from the project.

e Add DARCIITestRes.c and DARCI ITestRes.h to the project.

Page 36 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

To customize the I/O configuration, you will need to modify the I/O configuration data structure
initialized in DARCI1 1Config.c and described in detail in DARCI 1Config.h. Rather than modify the
DARCI IConfig.c file directly, it is better to overwrite the data during program initialization. This
allows you to use the macros in DARCI ITestRes. h so that if you add or delete controls, the control
ID information is automatically updated. (The SetBytes function only writes to Flash memory if the
values are different from the desired values, so this will not exhaust the Flash memory.) To customize
the I/O configuration, open the file DARC-11.c and insert the following lines at the beginning of the
main() function (or copy them from the file DARC-11 Customized.c file in the development kit):

// main program

#include "DARCIITestRes.h"

rom unsigned char szMyName[] =
void main(void)

"My Product Title";

unsigned char cval;

PulseClearCountDown =
RefeshInputsNow = 0;

0;
// if no LinkMatik, flash red led rapidly
while ((ToothpickSemaphores&TPSF_LMTEXISTS)==0)

LedRed = ~LedRed;
msDelay (50) ;

}

// customize DARCcfg

cvVal = 0x55; // indicates config data has been initialized

SetBytes(STR_ROM00, (ADD)&DARCcfg.Initialized, 0, &cval, 1);

// device name

SetBytes(STR_ROM00, (ADD)DARCcfg.ServerName, szMyName, 0, MAXNAMELENGTHINCZ) ;
// four analog channels, ANO to AN3

cVal = 0x04;

SetBytes(STR_ROM00O, (ADD)&DARCcfg.nAnalogChannel, 0, &cval, 1);

// configure I/0; note default values are zeroes so if a value is zero,
/ we don't bother altering it
// DARCcfg.h explains the cVal values being used

cval = 0x01; // output
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncAN9, 0, &cVal 1);
SetBytes (STR_ROM00, (ADD)&DARCcfg.PinFuncAN10, 0, &cVal, 1);
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncAN1l, 0, &cval, 1);
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncTxD, 0, &cVal, 1);
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncSCL, 0, &cval, 1);
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncSDA, 0, &cVal, 1);
SetBytes(STR_ROM00O, (ADD)&DARCcfg.PinFuncSDO, 0, &cVal, 1);
cval = 0x02; // PWM output
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncCCP1l, 0, &cval, 1);
SetBytes(STR_ROM00, (ADD)&DARCcfg.PinFuncCCP2, 0, &cval, 1);
SetBytes (STR_ROMOO, (ADD) &DARCcfg.PinFuncCCP3, 0, &cVal, 1);
cVal = 0x03; // Parallel A and Parallal C are both 3-bits wide
)
)

SetBytes(STR_ROM00, (ADD)&DARCcfg.ParallelA, 0, &cVal, 1);
SetBytes(STR_ROM0O, (ADD)&DARCcfg.ParallelC, 0, &cval, 1 ;
cVal = 0x02; // Timebase is 3.2us (

SetBytes(STR_ROM00, (ADD)&DARCcfg.ParallelA, 0, &cVal, 1);
cVal = OxFF; // PWM period is (OxXFF + 1) = 256 Timebase units

SetBytes(STR_ROM00, (ADD)&DARCcfg.PWMPeriod, 0, &cVal, 1);

cval = 0x05; // Refresh every two seconds

SetBytes(STR_ROM00, (ADD)&DARCcfg.RefreshRate, 0, &cval, 1);

// link controls to I/0O

cVal = TFP_BILT TxD;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID TxD 1B], 0, &cvVal, 1);
cval = TFP_BILT SDO;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID_SDO 7], 0, &cVal, 1);
cVal = TFP_BILT SDA;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID SDA 8], 0, &cVal, 1);
cval = TFP_BILT SCL;

SetBytes(STR_ROMO00, (ADD)&DARCcfg.ToFromPin[ID SCL 9], 0, &cvVal, 1);
cval = TFP_NDTM ANO;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID ANO 18], 0, &cVal, 1);
cVal = TFP_NDTM AN1;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID AN1 C], 0, &cVal, 1);
cVal = TFP_NDTM AN2;

SetBytes(STR_ROMO00, (ADD)&DARCcfg.ToFromPin[ID AN2 D], 0, &cVal, 1);
cval = TFP_NDTM AN3;

SetBytes (STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID AN3 E], 0, &cVal, 1);

cvVal =

TFP_NDTM_ParallelC;

Page 37 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID PC3 F], 0, &cVal, 1);

cval = TFP_L ParallelA;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID PC3_F], 0, &cVal, 1);

cval = ID_CCP1_11;

SetBytes (STR_ROMOO, (ADD)&DARCCfg.TOFromPin[TFPiNDTM7CCPl], 0, &cval, 1);
cval = ID CCP2 12;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[TFP_NDTM CCP2], 0, &cval, 1);
cval = ID CCP3 _13;

SetBytes (STR_ROMO0O0, (ADD)&DARCcfg.ToFromPin[TFP_NDTM CCP3], 0, &cVal, 1);
cval = TFP_BILT AN4;

SetBytes (STR_ROMOO, (ADD)&DARCCfg.TOFromPin[IDfAN4714], 0, &cval, 1);
cVal = TFP_BILT ANS;

SetBytes(STR_ROM00, (ADD)&DARCcfg.ToFromPin[ID AN5 15], 0, &cVal, 1);
cval = TFP_BILT AN6;

SetBytes(STR_ROMO00, (ADD)&DARCcfg.ToFromPin[ID AN6 16], 0, &cVal, 1);
cval = TFP_BILT AN7;

SetBytes (STR_ROMOO, (ADD)&DARCCfg.TOFromPin[IDfAN7717], 0, &cval, 1);

// if darc data has been programmed, set name and pin code
// new name only appears in device discovery after Toothpick reset
if (DARCcfg.Initialized==0x55)

SetBytes (STR_ROMOO,
SetBytes (STR_ROMOO,

(ADD) pLocalName,
(ADD) pszPIN, DARCcfg.PINCode, O,

DARCcfg.ServerName, 0,MAXNAMELENGTHINCZ) ;
MAXPINLENGTHINCZ) ;

4. Compile the code and program it into the Toothpick.

The version of DARC-II that you have created should perform in exactly the same way as the example in the
Evaluation Version, except that now you can modify the rest of the code as you wish. The key features of the
source code are described below.

Initialization

After variables are initialized, the I/O and Bluetooth security are set as specified by the DARCcfg data
structure. The FlexiPanel user interface server is started. Finally, the function Refreshlnputs() is called
to correctly set the state of any controls which are driven by the state of the I/O pins.

Main Program Loop

In the main program loop, the software determines whether the semaphore PulseClearCountDown has
been raised to request that it clears, after a 50ms pause, any I/O pins which are configured for pulse output. If
the semaphore is raised at any time while it is counting up to 50ms, is starts its 50ms delay count again. This
ensures that if two pins are pulsed in rapid succession, both pulses will be at least 50ms long. If the
semaphore was not raised at all, DARC-Il simply waits 50ms. Either way, the delay is probably 50ms,
possibly a bit more.

If the refresh rate is 100ms, 200ms or 500ms, DARC-II waits the specified time (less the 50ms already waited)
and calls Refreshlnputs()to update the inputs. If the refresh rate is longer than this, the Lowlnterrupt
callback will raise the semaphore RefeshlnputsNow if it is time to refresh the inputs. In this case, DARC-II
inspects the semaphore to decide whether to call Refreshlnputs().

High Interrupt

No high priority interrupts are expected nor provided for.

Low Interrupt

One type of low priority interrupts is provided for: when the clock ticks.

Every second, a SWI_Tick software interrupt will be received. DARC-II inverts the green LED to show that is
it working correctly. Note that this is not infallible indication since, if the main program loop hangs, SWI_Tick

software interrupts will probably still be generated correcily.

Next DARC-II decides whether it is time to raise the RefeshInputsNow semaphore and does so if required.

Page 38 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Finally, the SWI_Tick software interrupt is cleared.

ErrorStatus

If the client disconnects ungracefully, for example by going out of range, a general error (code 0xOF) may be
generated because LinkMatik will not know what to do with the data DARC-II is giving it. During development,
it is best to set a breakpoint so we can confirm what caused the error. For product release, it is obviously
better to reset immediately.

LMTEvent

Errors are handled in the same way as for ErrorStatus, although no errors are expected.

FlexiPanel Server Events

If a FlexiPanel Client connects, a FXPE_Connected event is generated and DARC-II lights the red LED.

If a FlexiPanel Client disconnects, a FXPE_Disco event is generated and DARC-II turns off the red LED.

If a FlexiPanel Client modifies a control, a FXPE_CIntUpdate event is generated and DARC-II calls the
function ControlChanged().

ControlChanged()

The ControlChanged() function identifies which control has changed and decides whether an output needs
to be changed. Since DARC-II Evaluation Version will not know in advance what 1/0 setup exists, it must
derive the information from the DARCcfg data structure. Equally, since it will not know in advance what
controls exist, it cannot use any macros generated by the FlexiPanel Designer header file. It needs to use the
pDevD, pDIgD and pCtlID data structures defined in Toothpick.h to discover what controls exist.

Refreshinputs()
The RefreshlInputs() function polls the state of the inputs and decides whether any control values need to
be changed. As with ControlChanged(), the DARC-II Evaluation Version will not know in advance what

I/O setup or user interface controls exist, so it must derive the information from the DARCcfg, pDevD, pDlgD
and pCtlID data structures.

The Refreshlnputs() function uses the FXPC_MultiUpdate message to send the updated controls to the
FlexiPanel client to reduce communication time.

Auxiliary Functions
Auxiliary functions are provided for:

e Setting output pins according to the state of controls.
o Retrieving the state of input pins.

Page 39 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

HappyTerminal Firmware Solution

Description

HappyTerminal is an example of a commercial application using Toothpick. It is a terminal emulator for
monitoring and injecting TTL-level serial data in digital electronic circuits and prototypes. It uses the
FlexiPanel User Interface Server so that any Bluetooth-equipped Windows PC or Pocket PC can act as the
user interface. HappyTerminal features in the September 2005 edition of Circuit Cellar.

Executing the Finished Application

The HappyTerminal firmware solution is a fully documented commercial product. The documentation is
included in the development kit as the file HappyTerminal.pdf. Follow the instructions in the
documentation to execute and explore the product. Note how the documentation includes:

1-page summary with ordering information — Allows the front page to be used as an information leaflet.
Pin descriptions — Summarizing the function of each pin.

Configuration guide — Including very simple schematic diagrams, as many users may be beginners.
Usage guide — Indicating how to operate HappyTerminal.

Settings guide — Indicating how to change from the default settings.

Mechanical data — To assist in PCB layout.

Technical specifications.

FCC / CE / IC Modular Approval — device labeling requirements.

Patents apply and/or pending — All products incorporating Toothpick are implicitly protected by
FlexiPanel’s patents and patent applications.

User Interface Development in FlexiPanel Designer

The User Interface is defined in the file HappyTerminalRes.FxP. The main screen is actually composed of
20 individual text controls for the main blue portion of the screen and 20 individual text controls for the debug
portion of the screen. Settings data is stored in EE memory so that it is retained when power is removed.

In the Pocket PC layout, the Debug controls overlay the main text controls. In the Windows layout, the
Debug controls are placed to the right of the main text controls. This is because Windows is less reliable in
placing child windows correctly. No attempt has been made to make the user interface suitable for
Smartphone and Java phones because the user interface is too complex.

A separate settings dialog is used to adjust HappyTerminal configuration.

Application Development in MPLAB

If you wish to customize the HappyTerminal firmware, you will need to use the MPLAB development
environment. If you have not already done so, please first read the section Guide To MPLAB C18
Development and study the Hello World firmware solutions.

The application code for the HappyTerminal firmware solution is extensive and the entire project is in the
development kit. The most important files to note are the application source code file HappyTerminal .c
and the Designer-generated macros header file HappyTerminalRes.h. The key features of the source
code are discussed below.

Static variables and Declarations
Prior to the main() function in HappyTerminal .c:
o Static variables are declared, including a receive buffer to store bytes as they are received but before

they have been processed.
Page 40 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

e The I/O pins and semaphore flags are #defined.
Initialization

When the application starts, the FlexiPanel server is initialized. Then the current settings are read from the
settings controls and the UART is initialized.

Main Program Loop
In the main program loop, the software flashes the green LED.

If an error is detected, the Red LED is allowed to remain lit for half a second; then, the UART is reset and the
LED is extinguished.

High Interrupt

If a character is received, a high interrupt is generated. HappyTerminal stores the data in the receive buffer
and sets the SWI_SWI 1 software interrupt flag indicating that there is received data to be processed.

Low Interrupt

Two types of low priority interrupts are provided for: when the clock ticks and if the SWI_SWI11 software
interrupt flag is raised.

Every second, a SWI_Tick software interrupt will be received. HappyTerminal simply clears the flag and
returns.

The SWI_SWI1 software interrupt will be raised whenever there is data in the receive buffer to be processed.
HappyTerminal transfers the data to the main screen in ASCIlI mode or Debug mode as appropriate.

ErrorStatus

No errors are expected. However, it is always possible that Toothpick will enter an unanticipated state and
generate an error. During development, it is best to set a breakpoint so that we can inspect what caused the
error. For product release, it is obviously better to enter a failsafe state and/or reset.

LMTEvent

Errors are handled in the same way as for ErrorStatus.

FlexiPanel Server Events

If a FlexiPanel Client disconnects, a FXPE_Disco event is generated and HappyTerminal returns to the main
screen if it was displaying the Settings screen.

If a FlexiPanel Client modifies a control, a FXPE_ClIntUpdate event is generated and HappyTerminal deals
with the information as would be expected. In particular, note:

Settings OK button. When pressed, the UART is reconfigured. If receive mode has been switched
between Debug and ASCII, a new line is started.

Transmit edit OK button. When pressed, the data is read from the edit box, interpreted as ASCII or
hexadecimal, and transmitted. The edit text is then cleared. If two-byte hexadecimal data was
expected but the data cannot be interpreted as such, transmission will be aborted and the word Error
will be written to the Transmit Edit text control.

Page 41 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

If the FlexiPanel Server switches dialogs, a FXPE_NewDialog event is generated. This is used to show or
hide the green Debug mode text controls, since control properties can only be modified on the client, not the
server.

Auxiliary Functions
Auxiliary functions are provided for:

Configuring the UART based on the values of the controls in the Settings dialog.
Hiding or showing the green Debug mode text controls.

Starting a new line in the main screen.

Transmitting a byte and echoing it if necessary.

Page 42 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Toothpick Slave Firmware Solution

Slave mode is a serial interface providing access to Toothpick Services and 1/0. This allows developers to
use an external microcontroller to customize their application rather than having to learn the MPLAB
development environment and PIC microcontrollers in depth.

Description

Toothpick Slave is intended for rapid development of Toothpick applications without the need to be familiar
with the MPLAB development environment. At a later date, the complete application can be migrated to the
Toothpick and the host controller is simply omitted from the bill of materials — not even the PCB layout need to
be changed.

Toothpick Slave understands commands for:

System reset.

General configuration.

I/O configuration.

Setting an output value.

Reading an input value.

Managing Bluetooth connections.

Sending and receiving Bluetooth data.
FlexiPanel User Interface Server management.
Sending and receiving user interface control information.
Reading and writing to memory locations.

Real time clock control.

Commands generate responses from Toothpick Slave. In addition, unsolicited responses may occur, for
example if a user modifies a control. For this reason, a response message queue is implemented. The host
can manage the flow of messages by one of: (i) having a sufficiently large buffer to store all incoming
messages, (ii) using hardware flow control to request messages one at a time, or (iii) using a ‘ready for next
response message’ command.

Initializing Toothpick Slave

The Toothpick Slave Firmware Solution must be ‘Field Programmed’ into the Toothpick. This takes a few
seconds and requires either a Windows PC or a Pocket PC with Bluetooth. The procedure is as follows. If
required use the default PIN code 0000.

ToothPIC Slave

1. Download the Toothpick Development
Kit from www.flexipanel.com and locate
the Toothpick Slave Service Pack
ToothpickSlaveWin.exe (Windows)

or Toothp ickSlavePPC.exe (Pocket Step 2. Make a Bluetooth connection Fram this computer ko the module 4
PC) and enter the COM port used in the box on the right.

2. Power-up the Toothpick Slave with the e ldate b h | cton fach
Step Z: Press the Update, .. buttaon, The LEDs will stop Flashing
On'board pUSth.ttOI'] held dOWﬂ. The alternately when prograrmming is complete.
on-board LEDs will flash simultaneously.

Step 1: Reset the module with the pushbutton held down, The LEDs
should flash simultaneausly,

3. Start running the Toothpick Slave

Service Pack and connect from the T] [Closs]
computer to the Toothpick using
Bluetooth. [l

4. Enter the COM port used to connect to the Toothpick in the box provided.

Page 43 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

5. Press the Update button. Programming takes about 30 seconds. When the progress bar is full, field
programming is complete.

If you have not yet connected the host controller, the red LED may illuminate indicating a serial receive error.
The red LED error indicator is self-resetting and will extinguish after half a second when you have correctly
connected the stamp. You may also get this indication if the host’s baud rate is wrong.

A Quick Tour

To evaluate Toothpick slave, you are going to be the host. Toothpick is intended to respond to binary
commands, but it can also accept the same commands if typed in ASCII hexadecimal. To send typed ASCII
hexadecimal commands to Toothpick Slave, you will need to connect it to a terminal emulator. The
instructions which follow assume you will use the HyperTerminal program which comes bundled free with the
Windows operating system. You will need a Windows PC with a serial port (or USB serial port adapter).

6. The serial outputs of Toothpick are TTL level and need to be converted to RS232 level. For this, we
recommend a MAX233 level converter because all voltage doubling components are integrated into
the circuit. Follow the this reference schematic or provide some other circuit:

vdd
p " DB9 (Female)
Sgext below regarding i, ii and iii ; connector
20 19
e o 6r<— Roout V49 Roin [———<—— Pin7 O 5
N 18 9 O
RTSF—-————————— —>—— T2in T2out ——>——— Pin8 O .
Toothpick 3 4 8
n O
W = Slave RxD Riout R1in Pin 3
2 MAX233 5 O 3
TxD Tin Tiout > Pin2 7 O
12 11 O R
" s | O
Vss [Vss E O 1
16| 10 6|9
Vss Pin 5

When initialized, Toothpick has no CTS and RTS flow control and you should connect just (i) R2out to T2in.
If you later enable flow control, connect (i) R2out to CTS and (iii) T2in to RTS as shown instead.

If you do not have a MAX233, you can use any circuit you wish so long as RxD and TxD are level translated fully duplex.

PIN numbers for MAX233 DIP package. SO package pin numbers differ.
Circuit is for a DCE configured device for direct connection to DTE device such as a Windows PC.

7. The Toothpick Slave defaults are deliberately chosen to permit connection to HyperTerminal ‘straight
out of the box’. Once physically connected, start HyperTerminal and select the following settings:

Connect using COM port as appropriate.

9600 baud (bits per second).

8 data bits, no parity, 1 stop bit

No flow control. (You enable it later after you have enabled Flow Control on the Toothpick.)
(In Properties > ASCII Setup) Send line ends with line feeds.

Echo characters locally.

8. Power up the Toothpick. After a couple of seconds the LEDs will flash and HyperTerminal should
display the following initialization message:

10536C61766520342E302E3000000000

9. As a first test, we will set an 1/0 pin as an output and set it high. Connect an LED with a current
limiting resistor to pin AN11 so that it would light if the pin were high.

Page 44 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

10.

11.

12.

13.

14.

Type the following into HyperTerminal and press enter. (You can use lower case for the ‘B’ if you
want. Ensure Send line ends with line feeds is set in HyperTerminal so that <CR><LF> is sent when
you press enter.)

04021B01

Note: When sending ASCII commands to Toothpick, if you make a typing error, avoid pressing delete,
or pressing enter repeatedly until an error message is generated. This is because the delete and
carriage return characters are legitimate binary characters. Instead, keep tapping a completely illegal
character (e.g. ‘z") until the error message 0302F1 is generated. Then you can start typing a new
command.

What you typed was the instruction to set pin AN11 as an output. The 04 indicates that there are four
bytes in the command. The 02 indicates that you want to configure an I/O pin. The 1B indicates that
the pin is AN11. Finally the 01 indicates that you want it to be a digital output. You should get the
response:

0201

The 0201 response is an acknowledgement that the command was carried out successfully. This
response will always be sent if no other response is appropriate. All commands generate at least one
response. 0201 responses are common, so this tutorial will not refer to them again. If you received
the message 0302F1, that was an error message and you probably made a typing mistake — power
up again and restart.

Type the following into HyperTerminal and press enter:

04031B01

What you typed was the instruction to set pin AN11 high — the LED should have come on. The 03
indicates that you want to set the value of an 1/0 pin. The 01 indicates that you want it to be high.

Next we are going to ‘drive’ the LinkMatik Bluetooth radio from the host device. Type the following
into HyperTerminal and press enter:

04050408

What you typed was the instruction to scan for devices for 15 seconds. The 05 indicates that you
want to send a command to the LinkMatik radio. The second 04 indicates that you want to send the
Inquiry command. The 08 indicates that the inquiry should last 10 seconds. Depending on the other
discoverable Bluetooth devices in range you may receive up to 10 responses such as:

160505080046B939B0466C65786950616E656C205600

The 160505 indicates that the response is a discovered device. The 080046B939B0 is the
Bluetooth ID of the discovered device. The 466C65786950616E656C205600 is a zero-terminated
string containing the first 12 characters of the device name (“FlexiPanel V” in this case).

Finally, you are going to provide a FlexiPanel User Interface service. Type the following into
HyperTerminal and press enter:

030601

This starts the FlexiPanel User Interface server. Using a FlexiPanel Client application, connect to
Toothpick Slave.

Page 45 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

15. When you successfully connect, you will see a very simple User L uothpisine
Interface as shown in the graphic on the right. It contains only the words | cne
‘Toothpick Slave’. In HyperTerminal, you should see the following

responses:

Toothpick Slave

090503080046B939B0 (Last 12 chars will differ.)

030601

The 09050308 message is from LinkMatik and indicates that a Bluetooth device has connected. The
last 12 characters are the Bluetooth ID of the device. The 030601 message is from the FlexiPanel
server and indicates that the device is a FlexiPanel Client.

16. This user interface is a bit dull, SO we Will NOW [Eli B R T T e A A S el o () =] o3|
program a more interesting User Interface into |E° & i Lwseipede tep

. ; . DEH ax faddfBHMER O 5 Hm EEEE
Toothpick Slave. Run the FlexiPanel Designer | o e — e e 5

1 H H] mage TR e : Target Properties
application ~ and ~ open the file |@ im Izagsmeees g —g;g;é;:mﬁ
SlaveTestRes.FxP from the development kit. [155 Gl vt oms Windows PCProperties ¥

H H latriz " " % ateTime skvle: W, ToothPIC Slave Properties
This is exactly the same as the @i tme 3 focon o nein. o ;
y

A2 Humber "ANZ", Fixed point, Min0, Max 10.,, 0007

DARCI I TestRes.FxP examp|e used in the [a= Number "ANZ', Fixed point, MinD, Max 0., 0008

PC3 Humber "PC3', Fixed point, Min 0, Max 7 (... 0009

DARC-II firmware solution, except that the target |25, 5. Soomlimm s e ragamming compet

Programming mess: Mo

has been set to Toothpick Slave. If you wantto |&: e B 0 tton 15 oo S
know more about what all the settings mean and [1= e i romemiy o b et Awiesons coupar) NOTE
how the file was created, follow the tutorial in the |&F =i &k EG Sbicoee: o i
DARC-II module product documentation. T

17. Power-up the Toothpick Slave with the pushbutton pressed down. The [FEULEEI]
LEDs will flash rapidly, indicating that it is allowing itself to be configured. | suus
Connect to the module from your Windows PC and make a note of the TR W —

COM port that Bluetooth uses. In FlexiPanel Designer menu, select
View > Toothpick Slave Properties and, in the properties list on the right,
find the property ‘Programming COM Port’ and set the value to the COM
port that Bluetooth is using. In FlexiPanel Designer menu, select Target
Device > Program Toothpick Slave from the menu. The user interface
will be programmed into the Toothpick Slave.

18. When programming is complete, Toothpick Slave will automatically reset and you will see the
initialization message again in the HyperTerminal window. Set the application name and restart the
FlexiPanel Service again by typing into HyperTerminal the following:

030601

£ Toothpick Slave
and then connect to Toothpick again from a FlexiPanel client. T e
(If the display looks strange, try selecting Load Recommended CC_JC_JC_Jeen
Layout from the Settings Menu) The User Interface will be the o
same as the DARC-II module. If you modify any controls, you ||. :
will get corresponding responses in the HyperTerminal window. ||2 —
Type the following into HyperTerminal: -

ANO value
060D00050000
060D0005FFO3 P
060D0005FF01 — " oo 25 8

Observe how you just added rows to the matrix control.

That completes the quick tour. For more information on commands, etc, refer to the section Guide to
Toothpick Slave Development.

Page 46 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Migration to MPLAB

The Toothpick Slave Firmware Solution can do most things that Toothpick is capable of. You may, however,
wish to customize it either to migrate your host controller application inside Toothpick or to access specialized
PIC functions.

To make customization possible, we have made the C source code freely available for you to customize. To
do this you will need to know how to program microcontrollers in C and also be familiar with Microchip
Technology’s MPLAB development environment.

Since many customization requirements are relatively simple, we offer a paid-for customization service to
commercial developers who are not familiar with programming in the MPLAB development environment.
Please contact us for details.

The following instructions allow you to migrate the Evaluation Application solution to the MPLAB development
environment. If you have not already done so, please study the Hello World applications to understand how
interaction with Toothpick Services works. The relevant code is in the file Slave.c in the Development Kit.

User Interface

If you customize the application, it is easiest to program the user interface by setting Toothpick MPLAB as the
Designer target and including the files generated by FlexiPanel Designer in the project in place of
SlaveDefaultRes.c and SlaveDefaultRes.h. The header file will contain useful macros which get
updated if control IDs change.

Because the Toothpick Slave Firmware Solution does not know the User Interface information in advance, the
required memory needed to be reserved for it. Therefore you may remove the lines:

#pragma romdata Section 010000 = 0x0101D7

rom unsigned char p010000[0x3E29]; // first 0x01D7 Bytes in SlaveDefaultRes.h
#pragma romdata Section_014000 = 0x014000

rom unsigned char p014000[0x4000] ;

#pragma romdata Section 018000 = 0x018000

rom unsigned char p018000[0x4000];

#pragma romdata Section 01C000 = 0x01C000

rom unsigned char p01C000[0x3000] ;

#pragma romdata

and also the lines:

#pragma udata TP_UIRAMO0O // located at 0x100 - Ox1FF
unsigned char pFxPRAMOO0OOB [0xXFF] ;
#pragma udata TP_UIRAM100 // located at 0x200 - O0x1FF
unsigned char pFxPRAM100[0x100];
#pragma udata TP_UIRAM200 // located at 0x300 - O0x1FF
unsigned char pFxPRAM200[0x100];
#pragma udata TP_UIRAM300 // located at 0x400 - Ox8FF
unsigned char pFxPRAM300[0x100] ;
#pragma udata TP_UIRAM400 // located at 0x500 - O0x8FF
unsigned char pFxPRAM400[0x100];
#pragma udata TP_UIRAM500 // located at 0x600 - O0x8FF
unsigned char pFxPRAM500[0x100];
#pragma udata TP_UIRAM600 // located at 0x700 - Ox8FF
unsigned char pFxPRAM600[0x100] ;
#pragma udata TP_UIRAM700 // located at 0x800 - 0x8FF

unsigned char pFxPRAM700[0x100];
#pragma udata

However, you must reserve space for your message queue just below 0x900, otherwise the linker might try to
use the memory. The following example allocates enough memory for a message queue of 11 messages of
22 bytes:

#pragma udata MESSAGESTACK=0x80E // located at 0x80E - 0x8FF
unsigned char pMessage [0xF2];
#pragma udata

Page 47 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Initialization
Toothpick Slave reads permanently stored settings from EE memory. Then it initializes the following:

Message queue.

Serial port for communication with the host.
Flow control.

External memory, if required.

Bluetooth security.

After variables are initialized, the I/O and Bluetooth security are set as specified by the DARCcfg data
structure. The FlexiPanel user interface server is started. Finally, the LEDs are flashed and the initialization
string transmitted to show that initialization is complete.

Main Program Loop

There is nothing in the main program loop. All the required processing takes place in interrupts. If you want
to port your host controller into the Toothpick, you can do whatever you like here and/or in the callback
routines.

High Interrupt

The high priority interrupt is used to add incoming bytes to the receive buffer. This is placed in high priority
interrupt because no other task may prevent it from being read before the next byte arrives. If the entire
command has been received, the software interrupt SW1_SWI 1 is raised so that the command is processed in
the low priority interrupt.

Low Interrupt

Six types of low priority interrupts are provided for:

¢ Restarting transmission if the CTS pin goes low.

¢ Loading the next byte into the UART once the current byte has started being sent.

e Clearing the SWI_Tick interrupt.

e Processing commands as they are received.

e Pulling a message off the message queue and transmitting it.

¢ Reading raw data received from a non-FlexiPanel remote device and transmitting it to the host.

Note the use of two software interrupts. This allows one interrupt to trigger another safely.
ErrorStatus

No errors are expected. If an error occurs, the auxiliary function InternalError() performs whatever task
is supposed to be performed in the event of an error.

LMTEvent

Errors are handled in the same way as for ErrorStatus. Most other events are converted to responses to
send to the host and are added to the message queue.

FlexiPanel Server Events

FlexiPanel Server Events converted to responses to send to the host and are added to the message queue.

Page 48 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Message Queue Management

AppendToMessage() concatenates a string onto a message being constructed at the tail of the message
queue. AddMessageToQueue() then advances the queue and raises software interrupt SW1_SWI2 to signal
that a message requires transmission.

SendNextMessage () pulls a message off the queue, loads it into the transmit buffer and starts transmitting it.
Command Processing Functions
13 command processing functions are provided:

e ConFfigSIvCmd() for processing Configure Slave commands.

e ConFfigloCmd() for processing Configure I/O commands.

e Setl0Cmd() for processing Set I/O commands.

e GetlOCmd() for processing Get I/O commands.

e LMTCmd() for processing LinkMatik commands.

o FxPCmd() for processing FlexiPanel Server commands.

o GetFxPInfoCmd() for processing User Interface Info commands.
o GetCtlICmd() for processing Get Control Data commands.

o SetCtlPropsCmd() for processing Set Control Props commands.
o SetCtICmd() for processing Set Control Data commands.

o SetRowCmd() for processing Set Row, Append Row and Log Row commands.
o GetMemCmd() for processing Get Memory commands.

o GetMemCmd() for processing Set Memory commands.

While these functions are extensive, their functions are self-evident.
Auxiliary Functions
Auxiliary functions are provided for:

¢ Signaling an error.

e Converting from ASCII hexadecimal to binary.

e Sending an 0201 (“OK”) response.

e Sending DateTime response.

e Transmitting 10 values responses.

e Converting from Control ID to a control array index value.

Page 49 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Guide to Toothpick Slave Development

HyperTerminal Setup

The easiest way to experiment with Toothpick Slave is to connect it to a terminal emulator such as
HyperTerminal, which is bundled with the Windows operating systems. Notes on how to do this are given in
the section Toothpick Slave Firmware Solution.

Note: When sending ASCIl commands to Toothpick, if you make a typing error, avoid pressing delete, or
pressing enter repeatedly until an error message is generated. This is because the delete and carriage return
characters are legitimate binary characters. Instead, keep tapping a completely illegal character (e.g. ‘z’) until
the error message 0302F1 is generated. Then you can start typing a new command.

BASIC Stamp Host Setup

Toothpick can be connected directly to BASIC Stamp using any data pins. To send data at 9600 baud to
Toothpick, use the following BASIC command (substitute RxDpin, RTSpin with the actual pins used):

SEROUT RxDpin\RTSpin, 240, [Command]

To receive data at 9600 baud from Toothpick, use the following BASIC command (substitute TxDpin, CTSpin
with the actual pins used):

SERIN TxDpin\CTSpin, 240, [Response buffer]

The BASIC Stamp doesn’t buffer data so you will need to call SERIN regularly to avoid the Toothpick Slave’s
message queue from overflowing. You can use the INT1 is DATA configuration command to set INT1 as an
output which is high whenever messages are in the queue waiting to be processed, and low otherwise.

PIC Host Microcontroller Setup

Another UART-equipped PIC can be connected directly to the Toothpick Slave. Simply cross over the
connections (i.e. connect RxD to TxD, CTS to RTS, etc). The sample code provided for the Toothpick Slave
firmware solution shows how to write interrupt-driven, buffered serial I/O and you can copy from it to develop
your application code.

External memory

External memory may be used as described in the Memory Management section of the Toothpick services
reference. This memory may then be allocated to the FlexiPanel Server or accessed using the Get Data and
Set Data commands. Use the Config Slave (I2C Memory Setup) command to set up the SDA and SCL pins.

Adding a FlexiPanel User Interface

FlexiPanel User Interfaces can be written to Toothpick Slave at any time using FlexiPanel Designer as shown
in the Quick Tour section of the Toothpick Slave Firmware Solution. The RAM space is limited to 0x800
bytes less the number of bytes required for the message queue (22 bytes per message). The Flash ROM
space is limited to OXEOOO bytes.

Beware that control ID value may change if you insert a dialog or a control earlier in FlexiPanel Designer’s
control list. You may therefore wish to define constants in your host controller code to simplify changes to ID
values. It is also good practice to complete a user interface design as much as possible before coding. This
is not for the sake of easier coding; it is because the result is more intuitive to the user.

Page 50 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Caution using ROM for modifiable control data

Writing to Flash ROM memory causes the PIC CPU clock to be suspended for about 2ms. During this period,
any incoming ASCII characters may be lost if the UART interrupt cannot be responded to. Avoid using ROM
for data modifiable by the FlexiPanel Client unless the UART speed is 2400 baud or less. RAM, EE and
External memory have no such limitations.

Commands

Binary commands may be up to 22 bytes long; ASCIl commands 48 bytes. The first byte is the command
length byte, equal to the total number of bytes in the message. The second byte is the command byte, which
indicates how the remainder of the message should be interpreted.

Commands can be in either ASCII or binary and the two formats can be mixed freely. In ASCII format, each
byte is transmitted as two hexadecimal digits (upper or lower case) and the entire command must be followed
by a <CR><LF> pair (i.e. the control characters 0xOD and 0x0A).

If the Responses anytime property is set, all commands generate a response. This will be the OK response if
no other response is appropriate.

Only one command can be processed at once. While it is being processed, the RTS pin will go high and no
further messages should be sent. To know when the previous command has completed, observe the state of
the RTS pin or wait for a response to be sent. Only then send another command.

Command Summary
Command Command | Effect
Byte
Reset 0x00 Resets Toothpick
Configure Slave 0x01 Configures Toothpick Slave
Configure 1/0 0x02 Configures I/0
Set I/0 0x03 Sets an I/O value
Get I/0 0x04 Requests an I/O value
LinkMatik Command 0x05 Sends a command to the LinkMatik radio
FlexiPanel Command 0x06 Sends a command to the FlexiPanel server
User Interface Info 0x07 Gets user interface information
Get Control Data 0x08 Gets the value of a control
Set Control Props 0x09 Sets a control’'s properties
Set Control Data Ox0A Sets the value of a control
Set Row 0x0B Sets a row of a matrix control
Append Row 0x0C Appends a row of a matrix control
Log Row 0x0D Appends a time-stamped row of a matrix control
Read Memory OxOE Reads from memory locations
Write Memory OxOF Writes to memory locations
Set Message 0x40 Requests the next message (if “messages anytime”
mode is not enabled)

Reset Command

The command byte 0x00 instructs the Toothpick to reset. Additionally, a command length byte of zero will
generate an immediate reset (and will not wait for <CR><LF> if in ASCII format).

Reset Command Examples

Reset (binary) 0x02 0x00

Reset (ASCII) “0200<CR><LF>"
Reset (binary) 0x00

Reset (ASCII) “00”

Page 51 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Configure Toothpick Slave Command

The command byte Ox01 configures the general properties of the Toothpick Slave.

command byte is the Property Byte, which specifies the exact property being set.

represent the new property value, as follows:

The byte after the

The remaining bytes

Configure Toothpick Slave Command Properties
Property Byte | Property Remaining Byte(s)
0x02 Baud rate*® 02 = 2400 baud
03 = 4800 baud
04 = 9600 baud (default)
05 = 19200 baud
06 = 38400 baud
07 = 57600 baud
08 = 115200 baud
0x03 Authentication PIN* | Zero terminated ASCII pin code (maximum
16 characters plus zero terminator)
0x04 Device name* Zero terminated ASCII device name
(maximum 16 characters plus zero
terminator)
0x05 Flow control* 00 = None (default)
01 =CTS on INT1, RTS on INTO
02 =CTS on INT1, RTS on SDO
03 =CTS on INT1, RTS on CCP1
04 =CTS on INT1, RTS on AN11
05=CTS on INT1, RTS on SCL
10 =CTS on INT1, no RTS
0x06 Host has Rx buffer* | 00 = CTS must be strictly observed
FF = Host can accept one more byte after
CTS goes high
0x07 Response queue 1 byte = number of responses that can be
length* queued (see notes)
0x08 Initialization 00 = No initialization response
response” FF = Generate an initialization response
(default)
0x09 Responses 00 = Transmits responses only in reply to a
anytime* GetResponse command
FF = Transmits responses immediately
(default)
Ox0A ASCII responses™ 00 = Generates binary responses
FF = Generates ASCII responses (default)
0x0B On internal error...* | 01 = Flash error number, reset on button
press
02 = Reset immediately
03 = Send unsolicited error response to
host (default)
0x0C I12C memory setup* | 00 = No I2C memory (default)
01 = 12C memory with 100kHz clock speed
02 = 12C memory with 400kHz clock speed

Page 52 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

Configure Toothpick Slave Command Properties

Property Byte | Property Remaining Byte(s)

0Ox0D Device class* 3-byte device class value, expressed as a

6-character hex value with a zero

terminator, as defined in Toothpick Settings

section of Toothpick Services (default =

Toothpick default). Note: hex digits a-f

MUST be in lower case.

OxOE INTO is Data* 00 = INTO is not specially configured
(default)

FF = INTO is high output if messages are
queued waiting for a GetResponse
command or CTS flow control, low

otherwise.
0x41 Daylight Savings 1-byte DSTEvent value as defined in Real
Time Clock section of Toothpick Services
Reference
(00 = None, default)
0x42 Set Date / Time 8-byte DateTimeU value as defined in Date

Time Values section of Toothpick Services
Reference. (Day of week is ignored.)
0x43 Request Date / No additional bytes. Generates a Date
Time Time response immediately.

Notes:

Iltems marked *: ltems marked * are stored permanently in EE or Flash memory. With the exception of the
PIN code, these changes will not take effect until after the device next resets. If required, the default values
can be restored by reloading the Toothpick Slave Firmware Solution using Wireless Field Programming.

Host has Rx buffer: Toothpick can operate more efficiently if it can pre-load the next byte into the transmit
buffer while the current byte is being transmitted. However, if CTS goes high, it will be too late to stop the
byte being sent. Therefore if the host has no receive buffer and cannot accept this last byte after it has placed
CTS high, Host has Rx buffer should be set to zero. This is primarily intended for use with BASIC Stamps.

Response queue length: The number of messages which can be queued up at a time. If the queue fills up
before the host can process the messages, a Queue Full Error response will be placed at the top of the queue
and it must be assumed that other responses may have been lost. The minimum permitted queue length is 2.
The maximum depends on the storage requirements for the FlexiPanel User Interface data, if any. Each
response in the queue requires 0x16 bytes. The total queue byte requirement, plus any RAM data used by
the FlexiPanel User Interface, must not exceed 0x800 bytes. It is up to you to check this; Toothpick cannot do
it for you. If Responses Anytime is disabled, 0201 OK responses will not be added to the queue.

Responses anytime: If you disable Responses Anytime, responses will not be sent unless an 0240 Get
Message command is sent.

INTO is Data: If you use this you should not use INTO as an RTS pin. The Data pin will be high while there
are responses in the queue awaiting an 0240 Get Message. If Responses Anytime is disabled, 0201 OK
responses will not send the Data pin high. The Data pin will also go high during initialization for at least
500ms and then go low when Toothpick slave is ready to receive messages.

Initialization response: If Initialization response is set, the initialization response will be sent irrespective of
the Responses anytime property.

Configure Toothpick Slave Command Examples
Set authentication security (binary) | 0x04 0x01 0x01 0x01
Set authentication security (ASCIl) | “04010101<CR><LF>"

Page 53 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Set 19200 baud (ASCII) ““04010205<CR><LF>"

Set PIN 1234 (ASCII) “0801033132333400<CR><LF>"

Set device name Fred (ASCII) ““0801044672656400<CR><LF>"

Set binary responses (ASCII) “04010A00<CR><LF>"

Set device class 9fe204 (ASCII) ““0A010D39666532303400<CR><LF>"
Set time to 13:24:50, April 1st, 2005 | “0B014232180D010004D507<CR><LF>"
(ASCII)

Get time (ASCII) “030143<CR><LF>"

Configure I/O Command

The command byte 0x02 configures the Toothpick I/O. The byte after the command byte is the Property Byte,
which specifies the exact I/O property being set. The remaining bytes represent the new property value, as
follows:

Configure I/O Command Properties

Property | Property Remaining Byte(s)

Byte

0x01 A to D channels 1 byte, range 00 to OC = Number of analog
to digital channels (from ANO up).

0x02 Negative voltage 00 = Vss is —ve voltage reference (default)

reference 01 = AN2 is —ve voltage reference

0x03 Positive voltage reference | 00 = Vdd is +ve voltage reference (default)
01 = AN3 is +ve voltage reference

0x04 PWM time base units 00 = Turn PWM off

01 = PWM on, base time unitis 0.2us
02 = PWM on, base time unit is 0.8us
03 = PWM on, base time unit is 3.2us

0x05 PWM period Range 00 to FF = PWM period in PWM
base time, less one.
0x06 Parallel /0 A function 00 = Not used

02 = 2-bit output (AN11 — AN10)
03 = 3-bit output (AN11 — AN9)
04 = 4-bit output (AN11 — AN8)
05 = 5-bit output (AN11 — AN7)
06 = 6-bit output (AN11 — ANG)
07 = 7-bit output (AN11 — AN5)
12 = 2-bit input (AN11 — AN10)
13 = 3-bit input (AN11 — AN9)
14 = 4-bit input (AN11 — AN8)
15 = 5-bit input (AN11 — AN7)
16 = 6-bit input (AN11 — ANG)
17 = 7-bit input (AN11 — AN5)
0x07 Parallel I/O B function 00 = Not used
02 = 2-bit output (AN4 — AN3)
03 = 3-bit output (AN4 — AN2)

)

)

04 = 4-bit output (AN4 — AN1
05 = 5-bit output (AN4 — ANO
12 = 2-bit input (AN4 — AN3)
13 = 3-bit input (AN4 — AN2)
14 = 4-bit input (AN4 — AN1)
15 = 5-bit input (AN4 — ANO)

Page 54 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Configure I/O Command Properties
Property | Property Remaining Byte(s)
Byte
0x10 — | ANO — AN11 function 00 = Digital input (default)
0x1B (0x10 = ANO, 0x11 = 01 = Digital output
AN1, etc) (Ignored if configured for A to D input.)
Ox1C — CCP1 — CCP5 function 00 = Digital input (default)
0x20 01 = Digital output
02 = PWM output
0x21 — INTO — INT1 function 00 = Digital input (default)
0x22 01 = Digital output
0x23 SCL function As INTO
0x24 SDA function As INTO
0x25 SDO function As INTO

Notes:

I/O pin functions: Pin specifications are ignored for AN inputs if the A to D channels property dictates that
they should be A to D inputs. 1/O pin functions must not be sent for pins used for parallel 1/O, external
memory and flow control purposes.

Parallel I/O: Pins are modified or read at exactly the same instant.
PWM base time units: Base time units for PWM values. PWM period is in PWM base time units (1 to 256).

PWM duty cycle is in quarter PWM base time units (0 to 1023). PWM time base units turns PWM outputs on
or off, so during initialization, set up period and initial output values first.

Configure I/O Command Examples
Set ANO — AN4 as A to D pins (binary)
Set ANO — AN4 as A to D pins (ASCII)
Set: PWM time base 3.2us
PWM period as 256 (=1220Hz)
CCP2 pin as PWM (binary)

0x04 0x02 0x01 0x05
““04020105<CR><LF>"

0x04 0x02 0x04 0x03
0x04 0x02 0x05 OxFF
0x04 0x02 0x1D 0x02

Set I/O0 Command

The command byte 0x03 sets a Toothpick I/O output value. The byte after the command byte is the Property
Byte, which specifies the exact 1/0 value being set. The remaining bytes represent the new 1/O value, as
follows:

Set /0O Command Properties
Property Byte | Property Remaining Byte(s)
0x06 Parallel I/O A output Range 00 to 7F = new value
0x07 Parallel I/O B output Range 00 to 1F = new value
0x10 — Ox1B | ANO — AN11 output 00 = low
01 = high
O0x1C — 0x20 | CCP1 - CCP5 output | If digital, as ANO — AN11.
If PWM, range 0000 to O3FF. (Both
bytes must be specified.)
0x21 — 0x22 | INTO — INT1 output As ANO
0x23 SCL output As ANO
0x24 SDA output As ANO
0x25 SDO output As ANO
0x30 Green LED 00 = off
01l =on

Page 55 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Set I/O Command Properties

Property Byte | Property Remaining Byte(s)
0x31 Red LED 00 = off

01 =on

If the pin is not already configured as an output, the value will be ignored. 1/0O pin value commands must not
be sent for pins used for external memory and flow control purposes.

Set I/O Command Examples

Set AN10 as high (binary)

Set AN10 as high (ASCII)

Set CCP2 as 33% duty cycle (binary)

0x04 0x03 0Ox1A 0x01
“04031A01<CR><LF>"
0x04 0x03 0x1D 0x01 0x55

Get 1/0 Command

The command byte 0x04 requests a Toothpick I/O value. The byte after the command byte is the Property
Byte, which specifies the exact 1/0O value being requested. The value will be read and transmitted as an 1/0
value response.

Get I/0 Command Properties

Property Byte Property

0x06 Parallel 1/0 A input
0x07 Parallel 1/0 B input
0x10 — Ox1B ANO — AN11 input
0x1C — 0x20 CCP1 — CCP5 input
0x21 — 0x22 INTO — INT1 input
0x23 SCL input

0x24 SDA input

0x25 SDO input

0x30 Green LED

0x31 Red LED

0x32 Pushbutton

If the pin is configured as digital output, the result will be the current output value. If the pin is configured as
CCP output, the result will be unpredictable. /O pin value commands must not be sent for pins used for
external memory and flow control purposes.

Get I/0 Command Examples

Get AN10 (binary)

0x03 0x04 Ox1A

Get AN10 (ASCII)

“03041A<CR><LF>”

Get CCP2 (binary)

0x03 0x04 0x1D

LinkMatik Command

The command byte 0x05 is for the LinkMatik Commands, which are sent directly to the Bluetooth radio. They
allow device discovery, connection, transmission of raw data etc. The byte after the command byte is the
Property Byte, which specifies the LinkMatik Property being modified. The remaining bytes represent any
data associated with the command.

LinkMatik Command Properties

Property | Property Remaining Byte(s)

Byte

0x01 Enter slave mode None

0x02 Connect in master mode 6-byte Bluetooth device ID to connect to

Page 56 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

LinkMatik Command Properties

Property | Property Remaining Byte(s)

Byte

0x03 Disconnect None

0x04 Inquire 1 byte inquiry duration in seconds, range
0x02 to 0x3C

0x06 Enquire link quality None

0x07 Enquire signal strength None

0x08 Enter sniff mode None

0x09 Exit sniff mode None

Ox0A Enter hold mode None

0Ox0B Cancel None

0x10 Transmit raw data Up to 19 bytes of raw data

Notes:

Enter Slave Mode: Device becomes discoverable and connectable. The immediate response will be an OK
response. When a device connects, a Connect LinkMatik Response will be generated.

Connect in Master Mode: Device looks for a specific device to connect to. The immediate response will be
an OK response. When a device connects, a Connect LinkMatik Response will be generated. If no connect
response is generated, the device is not found and you should issue a Cancel command.

Cancel: Cancels a Slave, Master or Inquiry command which has not yet completed connecting / inquiry.

For further information: The LinkMatik commands are discussed in detail in the Toothpick Services
reference.

FlexiPanel Server Commands

The command byte 0x06 is for the FlexiPanel Server Commands, which are sent directly to the FlexiPanel
Server. They control the FlexiPanel User Interface service provided by Toothpick. The user interface must
first be programmed from FlexiPanel Designer as described in the above section Adding a FlexiPanel User
Interface.

LinkMatik commands and FlexiPanel commands cannot be intermixed. LinkMatik must be idle when the
FlexiPanel service is started and no further LinkMatik commands may be sent until after the Finish command
has been sent.

The byte after the command byte is the Property Byte, which specifies the FlexiPanel Server Property being
modified. The remaining bytes represent any data associated with the command.

FlexiPanel Server Properties

Property | Property Remaining Byte(s)

Byte

0x01 Start FlexiPanel service None

0x02 Finish FlexiPanel service None

0x03 Set Dialog 1 byte new dialog index number
0x04 Disconnect None

0x09 Initialize Data None

Notes:

Set Dialog: Displays a particular dialog. Dialogs are indexed in the order in which they are listed in
FlexiPanel Designer, starting from 0x00.

Disconnect: Disconnects a particular client but does not end FlexiPanel service. Another client may connect.

Page 57 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Initialize Data: Data will already be initialized when the FlexiPanel service starts. This command allows the
initial settings to be restored.

User Interface Info Commands

The command byte 0x07 is for the User Interface Info, which allows the host to read information about the
user interface which has been programmed into Toothpick by FlexiPanel Designer. The user interface must
first be programmed from FlexiPanel Designer as described in the above section Adding a FlexiPanel User
Interface.

The byte after the command byte is the Property Byte, which specifies the User Interface Info Property being
modified. The remaining bytes represent any data associated with the command. Each general and dialog
info commands will receive one User Interface Info Response; control info commands will receive two. Note
that since the Toothpick Slave firmware solution does not know in advance what the user interface looks like,
if you ask a meaningless question you may get a meaningless response rather than an error.

User Interface Info Properties

Property | Property Remaining Byte(s)
Byte

0x01 General Info None

0x02 Dialog Info Dialog index

0x03 Control Info Control ID

Note: The two bytes after the command byte are the Control ID. This is the value displayed in FlexiPanel
Designer under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a
control earlier in the control list. You may therefore wish to define constants in your host controller code to
simplify changes to ID values.

Get Control Data Command

The Get Control Data Command byte 0x08 retrieves the value of a control. The user interface must first be
programmed from FlexiPanel Designer as described in the above section Adding a FlexiPanel User Interface.
The FlexiPanel Server does not need to be running in order to get or set values.

The two bytes after the command byte are the Control ID. This is the value displayed in FlexiPanel Designer
under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a control
earlier in the control list. You may therefore wish to define constants in your host controller code to simplify
changes to ID values.

Each Get Control Data Command will receive at least one Control Data Response. If the storage required for
the control is greater than 16 bytes, multiple Control Data Response bytes will be received.

Get Control Data Command Examples
Get control 0x1234 (binary) 0x04 0x08 0x12 0x34
Get control 0x1234 (ASCII) “04081234<CR><LF>"

Set Control Props Command

The Set Control Props Command byte 0x09 sends control properties information to the client. Properties are
modified on the client only, not in the server. A client must therefore be connected for these properties to take
effect. When a new client connects, the properties will have to be sent again.

The entire command is always 12 bytes long. The two bytes after the command byte are the Control ID. This
is the value displayed in FlexiPanel Designer under heading ID in the main controls list. Beware that this ID
may change if you insert a dialog or a control earlier in the control list. You may therefore wish to define
constants in your host controller code to simplify changes to ID values.

Page 58 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

The subsequent 4 bytes of the command specify the new properties. The following properties may be bitwise-
ORed together:

Properties of Message Controls

(A message can only be displayed if its dialog is visible.)

To display a message control 0x00 0x00 0x00 0x00
To modify the message control’s properties 0x01 0x00 0x00 0x00
without displaying it.

No icon 0x00 0x00 0x01 0x00
Stop icon 0x00 0x00 0x02 0x00
Exclamation icon 0x00 0x00 0x03 0x00
Question icon 0x00 0x00 0x04 0x00
Information icon 0x00 0x00 0x05 0x00
No button response message required 0x00 0x00 0x00 0x00
OK button (V3 clients only) 0x00 0x00 0x10 0Ox00
OK, Cancel buttons (V3 clients only) 0x00 0x00 0x20 0x00
Retry, Cancel buttons (V3 clients only) 0x00 0x00 0x30 0x00
Yes, No buttons (V3 clients only) 0x00 0x00 0x40 0x00
Yes, No, Cancel buttons (V3 clients only) 0x00 0x00 0x50 0x00
Abort, Retry, Ignore buttons (V3 clients only) 0x00 0x00 0x60 0x00
Properties of Other Controls

Ensure control is visible on client screen 0x10 0x00 0x00 0x00
If the control color properties are to be set 0x40 0x00 0x00 0x00

The final 4 bytes of the command specify the new control color. The RGB values, each in the range 0x00 to
OXFF, are sent as the bytes OXRR OxGG 0xBB 0x00.

Set Control Properties Command Examples
Show a message control 0x0B03, 0x0C 0x09 0x0B 0x03 0x00 0x45
info icon, Yes / No buttons (binary) 0x00 0x00 0x00 0x00 0x00 0x00

Make control 0x0003 onscreen and 0Ox0C 0x09 0x00 0x03 0x50 0x00
red. 0x00 0x00 OxFF 0Ox00 0x00 0x00

Set Control Data Command

The Set Control Data Command byte OxOA sets the value of a control. The user interface must first be
programmed from FlexiPanel Designer as described in the above section Adding a FlexiPanel User Interface.
The FlexiPanel Server does not need to be running in order to get or set values. For matrix controls, one of
the Set / Append / Log Row commands is preferred.

The two bytes after the command byte are the Control ID. This is the value displayed in FlexiPanel Designer
under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a control
earlier in the control list. You may therefore wish to define constants in your host controller code to simplify
changes to ID values.

The next two bytes are the control offset (little-endian) and the remaining bytes are the new control data. For
controls whose data length is 16 bytes or less, the control offset should be zero. For controls whose length is
17 bytes or greater, it will be necessary to update the data using multiple Set Control Data Commands, each
with different control offset values. The control offset indicates where the new control data are to be placed
within the control’s data field. If multiple Set Control Data Commands are sent for a control, ensure that the
last, and only the last, has a control offset of zero. This indicates that the control data update is complete and
the new data can be transmitted to the client.

The data types for the various controls are as follows:

Page 59 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Control Data Types

Control Data type description.

Blob Binary data object — size specified in FlexiPanel Designer.
Button No data.

Date-Time 8-byte DateTimeU data structure.

Files No data.

Image No data.

Latch 1 byte, 0x00 for off, OXFF for on.

List 4 bytes, little-endian, zero-based index of the selected item.
Matrix Extensive — see Toothpick Services Reference.

Message No data.

Number 4 bytes, little-endian, signed integer.

Password 1 byte, 0x00 for closed, OxFF for open.

Section 1 byte, 0x00 for closed, OxFF for open.

Text ASCII or Unicode text — size specified in FlexiPanel Designer.

Set Control Data Command Examples

Set list or number control Ox0A Ox0A 0Ox00 0x02 0x00 0x00 0x05
0x0002 to the value 0x00000005 0x00 0x00 0x00

Set text control 0x0705 to the value
“ABCDEFGHIJKLMNOPQRSTUVWXYZ” | 0x11 Ox0A 0x07 0x05 0x10 0x00 0Ox51

Note zero terminator and little-endian 0x52 0x53 0x54 0x55 0x56 0x57 0x58

offset value. 0x59 Ox5A 0x00

First 16 bytes sent last to ensure that all 0x16 OxOA 0x07 0x05 0x00 0x00 0x41

control data are updated on the client Ox42 0x43 0x44 0x45 0x46 0x47 0x48

simultaneously. 0x49 Ox4A 0x4B 0x4C 0x4D Ox4E Ox4F
0x50

Set Row Command

The Set Row Data Command byte Ox0B sets a single row of data on a matrix control. The user interface
must first be programmed from FlexiPanel Designer as described in the above section Adding a FlexiPanel
User Interface. The FlexiPanel Server does not need to be running in order to get or set values.

The two bytes after the command byte are the matrix Control ID. This is the value displayed in FlexiPanel
Designer under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a
control earlier in the control list. You may therefore wish to define constants in your host controller code to
simplify changes to ID values.

The next two bytes are the row number to be set (little-endian). The first row is row zero. No row should be
set unless all row numbers preceding have been previously set. The Set Row Command should not be given
on any matrix which has previously received an Append Row or Log Row command.

If the matrix is a Date-Time matrix, the next 8 bytes are the date-time axis data; otherwise, if it is an XY matrix
with n bytes per X-axis value, the next n bytes are the X-axis data.

The remaining rows are the data for each cell in the row. The number of bytes of data should equal the
number of bytes per cell multiplied by the number of columns.

Unlike the Append Row and Log Row commands, it is quite probable that you will wish to update more than
one row at a time, and only transmit the result to the client when all rows have been updated. For this reason,
the client is not updated unless a Set Row command is sent containing no X or Y or row index data (i.e. just
the first four bytes of the command).

Page 60 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Set Row Command Example (X Axis is 2 bytes, 3 columns of 1 byte each)

Set matrix 0x0002 row 6 to (X=33, 6, 7, 8) 0x0B 0x0B 0x00 0x02 0x06 0x00
0x21 0x00 0x06 0x07 0x08

Set matrix 0x0002 row 4 to (X=22, 3, 4, 5) 0Ox0B 0x0B 0x00 0x02 0x04 0x00
0x16 0x00 0x06 0x07 0x08

Send result to client 0x04 0x0B 0x00 0x02

Append Row Command

The Append Row Data Command byte OxOC appends a row onto the end of a matrix control. The user
interface must first be programmed from FlexiPanel Designer as described in the above section Adding a
FlexiPanel User Interface. The FlexiPanel Server does not need to be running in order to get or set values.

The two bytes after the command byte are the matrix Control ID. This is the value displayed in FlexiPanel
Designer under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a
control earlier in the control list. You may therefore wish to define constants in your host controller code to
simplify changes to ID values.

The row data will be appended onto the bottom of the matrix. If the matrix is full, the top row will be discarded.

If the matrix is a Date-Time matrix, the next 8 bytes are the date-time axis data; otherwise, if it is an XY matrix
with n bytes per X-axis value, the next n bytes are the X-axis data.

The remaining rows are the data for each cell in the row. The number of bytes of data should equal the
number of bytes per cell multiplied by the number of columns.

The updated row will be immediately transmitted to the client, if connected.

Append Row Command Example (X Axis is 2 bytes, 3 columns of 1 byte each)
Append (X=33, 6, 7, 8) to matrix 0x0002 | 0x09 Ox0C 0x00 0x02 0x21 0x00 0x06
0x07 0x08

Log Row Command

The Log Row Data Command byte Ox0D appends a row onto the end of a Date-Time matrix control, using the
current value of the real time clock as the Date-Time axis data. The user interface must first be programmed
from FlexiPanel Designer as described in the above section Adding a FlexiPanel User Interface. The
FlexiPanel Server does not need to be running in order to get or set values.

The two bytes after the command byte are the matrix Control ID. This is the value displayed in FlexiPanel
Designer under heading ID in the main controls list. Beware that this ID may change if you insert a dialog or a
control earlier in the control list. You may therefore wish to define constants in your host controller code to
simplify changes to ID values.

The row data will be appended onto the bottom of the matrix. If the matrix is full, the top row will be discarded.

The remaining rows are the data for each cell in the row. The number of bytes of data should equal the
number of bytes per cell multiplied by the number of columns.

The updated row will be immediately transmitted to the client, if connected.

Log Row Command Example (X Axis is date-time, 3 columns of 1 byte each)
Append (6, 7, 8) to matrix 0x0002 | 0x07 0xOD 0x00 0x02 0x06 0x07 0x08

Page 61 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Get Memory Command

The Get Memory Data Command byte OXOE retrieves data from internal or external memory. Very little error
checking is done with this command, so it should be used with care.

The byte after the command byte is the mStr memory storage type as defined in the Memory Management
section of the Toothpick Services Reference. The next two bytes are the Addr memory address (little-endian)
as defined in the Memory Management section of the Toothpick Services Reference.

The final byte is the number of bytes required, up to 17 bytes.

Each Get Memory Command will receive exactly one Got Memory Response.

Get Control Data Command Example
Get 4 bytes of EE memory from 0x0123 | 0x06 OxOE 0x03 0x23 0x01 0x04

Set Memory Command

The Set Memory Data Command byte OxOF sets data in internal or external memory. Very little error
checking is done with this command, so it should be used with care. It is your responsibility to ensure that you
do not overwrite important memory regions. Overwriting ROMOO locations is not permitted; neither is writing to
ROMO1 location OXEOQO or higher.

The byte after the command byte is the mStr memory storage type as defined in the Memory Management
section of the Toothpick Services Reference. The next two bytes are the Addr memory address (little-endian)
as defined in the Memory Management section of the Toothpick Services Reference.

The remaining bytes are the data to be written to memory mStr starting at location Addr. Up to 17 bytes may
be written per Set Memory command.

Set Memory Command Example
Set EE memory from 0x0123 with the 0x09 OxOF 0x03 0x23 0x01 0x05 0x06
values 0x05 0x06 0x07 0x08. 0x07 0x08

Memory Map

The following memory areas are accessible:

Type mStr Lower Upper Also used by
value | address address
limit limit
RAM (volatile) 0x02 0x100 Ox8FF User interface (from 0x100 up).
Message queue (from Ox8FF down).
EE 0x03 0x000 Ox3FF User interface (from 0x0000 up).
Configuration settings OxX3EO-Ox3FF
EXTO external memory | 0x10 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xB0O/0OxB1)
EXT1 external memory | Ox11 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xB2/0xB3)
EXT2 external memory | 0x12 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xB4/0xB5)
EXT3 external memory | 0x13 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xB6/0xB7)

Page 62 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Type mStr Lower Upper Also used by

value address address

limit limit

EXT4 external memory | 0x14 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xB8/0xB9)
EXT5 external memory | 0x15 0x0000 IC limit User interface (from 0x0000 up).
(12C addr OXBA/OxBB)
EXT6 external memory | Ox16 0x0000 IC limit User interface (from 0x0000 up).
(12C addr 0xBC/0OxBD)
EXT7 external memory | 0x17 0x0000 IC limit User interface (from 0x0000 up).
(12C addr OXBE/OxBF)
Upper ROM block 0x81 0x0000 OXDFFF User interface (from 0x0000 up).
(0x01xxxX)

This memory is free for you to use, other than as follows:

e Designer.exe requires memory for the user interface as specified at the beginning of the
computer-generated file it creates.

¢ RAM locations from Ox8FF downwards are used by the message queue, 0x16 bytes per message.
For example, by default, 0x20 messages can be queued, so 0x640 to Ox8FF are used for the
message queue.

e EE locations Ox3EO to Ox3FF are used to store configuration settings.
If your user interface uses a large quantity of EE or RAM memory, you must also take care that you do not
overwrite the message queue or the configuration settings. FlexiPanel Designer down not know these are

already allocated and it will not warn you about this.

You can inspect values outside the address limits specified. However, writing to these addresses may cause
the Toothpick to malfunction.

Breakpoint Command
The command byte 0x10 instructs the Toothpick to flash its LEDs, allowing the host to indicate that an error
has occurred. It there is no response and no further commands should be sent without resetting the

Toothpick.

The byte after the command byte is a FlashVal value. This value is used to control how the LEDs flash. The
number is flashed as follows:

As many green and red simultaneous flashes as the hundreds digit of FlashVval
- As many red flashes as the tens digit of FlashVval
- As many green flashes as the units digit of FlashVal

or

- Three green and red simultaneous flashes if FlashVal is zero

Breakpoint Command Examples
Flash 201 (binary) | 0x03 0x10 OxC9

Page 63 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Get Message Command

The command byte 0x40 instructs the Toothpick to send the next response in the queue, presuming the
Responses anytime property is not set. If there are no more responses, the OK response will be sent.

Get Message Command Examples

Get Message (binary) 0x02 0x40

Get Message (ASCII) “0240<CR><LF>"
Responses

Binary responses may be up to 22 bytes long; ASCII responses 48 bytes. The first byte is the response
length byte, equal to the total number of bytes in the message. The second byte is the response byte, which
indicates how the remainder of the message should be interpreted.

Responses may be in either ASCII or binary as specified by the ASCII responses property. In ASCII format,
each byte is transmitted as two hexadecimal digits and the entire command will be preceded and followed by
a <CR><LF> pair (i.e. the control characters 0xOD and 0x0A).

If the Responses anytime property is set, all commands generate a response. This will be the OK response if
no other response is appropriate.

Some responses are unsolicited (see following table). If you put Toothpick into a state where an unsolicited
message may be generated, be warned that it may occur at any time. In particular, do not assume that a
message sent to Toothpick will be immediately responded to with the response to that message; unsolicited
responses may be received first.

Command Summary

Response Response | Interpretation

(* = unsolicited) | Byte

OK 0x01 Acknowledges completion of previous command

Error (*) 0x02 Reports an error. (Can be unsolicited depending on
On internal error... configuration setting.)

Date Time 0x03 Reports the time and date

I/O Value 0x04 The value of the requested 1/O pin

LinkMatik 0x05 The LinkMatik radio reports that an event occurred

Response*

FlexiPanel 0x06 The FlexiPanel server reports that an event occurs

Response*

User Info 0x07 The value of the requested user interface information

Control Data 0x08 The value of the requested control

Got Memory 0x09 The value of the requested memory location

Initialization* 0x53 A message sent to indicate initialization is complete

OK Response

The response byte O0x01 indicates that the previous command has been processed and another command
may be sent.

OK Response Examples
OK (binary) 0x02 0x01
OK (ASCII) “*<CR><LF>0201<CR><LF>"

Page 64 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Error Response

The response byte 0x02 indicates that an error has occurred. The byte after the response byte is the Error
Byte, which specifies the exact error that occurred:

Error Response Error Values

Error Byte Error Name Interpretation

OxFO Queue full The message queue filled up and some
messages were lost

OxF1 Not understood The previous command was not understood

OxF2 Ping Fail A FxPE_PingFail ping failure occurred

In addition, if the On internal error... property specifies that internal errors should be reported to the host, the
error byte may equal any of the ErrorStatus, LMTE_Error, LMTE_Warning error values.

Error Response Examples

Queue full (binary) 0x03 0x02 OxFO
Not understood (ASCII) “<CR><LF>0302F1<CR><LF>"
ErrorStatus error 0x03 0x02 0x0B

Memory Failure (binary)
General LinkMatik error “<CR><LF>03020F<CR><LF>"

(ASCII)

Date Time Response

The response byte 0x03 reports the current date and time to the host. The 8 bytes after the response byte
are the date and time in DateT imeU format.

Date Time Response Examples — 13:24:50, Friday, April 1st, 2005

Date Time (binary) OxO0A 0x03 0x32 0x18 OxOD 0x01 Ox05 0x04
0xD5 0x07

Date Time (ASCII) “<CR><LF>0A0332180D010504D507<CR><LF>"

I/O Value Response

The response byte 0x04 reports an I/O input value to the host. The first byte after the response byte
indicates which value is being reported and matches those used in the Get /O Command. The remaining
byte(s) will contain the reported value. The size will vary according to data type as shown in the examples
below.

I/O Value Response Examples
SDO digital input high (binary) 0x04 0x04 0x25 0x01

SDO digital input low (ASCII) “<CR><LF>04042500<CR><LF>"
AN3 analog input 0x234 (range 0 | “<CR><LF>0504130234<CR><LF>"
to 1023) (ASCII)
Parallel A (7-bit) analog input “<CR><LF>04040614<CR><LF>"
0x14 (range 0 to 31) (ASCII)

Page 65 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

LinkMatik Response

The response byte 0x05 reports a response from the LinkMatik radio. The first byte after the response byte is
the Response Value that indicates which response is being reported. The remaining byte(s) will contain any
associated data.

LinkMatik Responses

remote device, link
key

Response | Response Associated Data Interpretation
Value Meaning
0x06 Paired 6-byte Bluetooth ID of | A remote device successfully paired

with this device

LinkMatik Responses

Response | Response Associated Data Interpretation

Value Meaning

0x03 Connected 6-byte Bluetooth ID of | A connection has been established.
remote device

0x04 Disconnect None The remote device terminated the

connection

0x05 Found 6-byte Bluetooth ID of | A remote device was discovered
remote device, then during inquiry. (Ignore any data
first 12 bytes of name | send after name zero terminator.)
and zero terminator

0x06 Paired 6-byte Bluetooth ID of | A remote device successfully paired
remote device with this device

0x07 LinkQ 1-byte link quality Response to link quality request

0x08 Signal 1-byte signal strength | Response to signal strength request

0x10 Receive raw data | Up to 19 bytes Raw data received

For more details on any of these responses, consult the LinkMatik Events section of the Toothpick Services

Reference section.

LinkMatik Response Examples

(ASCII)

Device 12:34:56:78:90:AB connected

“<CR><LF>0905031234567890AB<CR><LF>""

Link quality (Binary)

0x04 0x05 0x07 OxFF

FlexiPanel Server Response

The response byte 0x06 reports a response from the FlexiPanel Server. The first byte after the response
byte is the Response Value that indicates which response is being reported. The remaining byte(s) will
contain any associated data.

FlexiPanel Server Responses

Response | Response Associated Data Interpretation

Value Meaning

0x01 Connect None A client connected

0x02 Disconnect None A client disconnected

0x04 Client Update | 2-byte control ID Client modified a control

0x07 Message 1-byte index number of The client selected an option in a
Response response message box. (V3 clients only)

Page 66 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

For the Client Update message, the Control ID is the value displayed in FlexiPanel Designer under heading ID
in the main controls list. Beware that this ID may change if you insert a dialog or a control earlier in the control
list. You may therefore wish to define constants in your host controller code to simplify changes to ID values.

For more details on any of these responses, consult the FlexiPanel User Interface Server Events section of
the Toothpick Services Reference.

FlexiPanel Server Response Examples
Device connected (ASCII) “*<CR><LF>030601<CR><LF>"

Client modified control 0x0002 (Binary) 0x05 0x06 0x04 0x00 0x02

User Interface Info Response

The response byte 0x07 is a response to a User Interface Info command. The first byte after the response
byte is the Response Value that indicates which response is being reported. The remaining byte(s) will
contain associated data.

User Interface Info Responses

Response | Response Associated Data

Value Meaning (2-byte integers except control ID are are little-endian.)

0x01 General Info First 16 bytes of bgFxPData data structure as described in
Toothpick.h

0x02 Dialog Info First byte is Dialog ID; then next 4 bytes are bgFxPDIgData
data structure as described in Toothpick.h

0x03 Control Info | First byte is Control ID; then next 4 bytes are bgFxPDIgData
data structure as described in Toothpick.h

0x04 Control Info Il | First byte is Control ID; then next 4 bytes are bgFxPDIlgData
data structure as described in Toothpick.h

For the Client Update message, the Control ID is the value displayed in FlexiPanel Designer under the
heading ID in the main controls list. Note that this ID may change if you insert a dialog or a control earlier in
the control list. You may therefore wish to define constants in your host controller code to simplify changes to
ID values.

Control Data Response

Control Data Response byte 0x08 is a response to a Get Control Data command. The two bytes after the
response byte are the Control ID.

If the control value comprises more than 16 bytes, it will be necessary to send multiple control data response
messages to convey the information. The two bytes after the Control ID are therefore the data offset (little-
endian) of this particular response: 0x0000 for the first response, 0x0010 for the second and so on. The
remaining byte(s) will contain associated data.

For the Client Update message, the Control ID is the value displayed in FlexiPanel Designer under the
heading ID in the main controls list. Note that this ID may change if you insert a dialog or a control earlier in
the control list. You may therefore wish to define constants in your host controller code to simplify changes to
ID values.

The data types for the various controls are as follows:

Control Data Types

Control Data type description.

Blob Binary data object — size specified in FlexiPanel Designer.
Button No data.

Page 67 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Control Data Types

Date-Time 8-byte DateTimeU data structure.

Files No data.

Image No data.

Latch 1 byte, 0x00 for off, OXFF for on.

List 4 bytes, little-endian, zero-based index of the selected item.
Matrix Extensive — see Toothpick Services Reference.

Message No data.

Number 4 bytes, little-endian, signed integer.

Password 1 byte, 0x00 for closed, OxFF for open.

Section 1 byte, 0x00 for closed, OxFF for open.

Text ASCII or Unicode text — size specified in FlexiPanel Designer.

Got Memory Response

Control Data Response byte 0x09 is a response to a Get Memory Data command.

The byte after the command byte is the mStr memory storage type as defined in the Memory Management
section of the Toothpick Services Reference. The next two bytes are the Addr memory address (little-endian)

as defined in the Memory Management section of the Toothpick Services Reference.

The remaining bytes are the data read from memory mStr starting at location Addr, as requested

Got Memory Response Example
Report EE memory from 0x0123 being 0x09 0x09 0x03 0x23 0x01 O0x05 0x06
values 0x05 0x06 0x07 0x08. 0x07 0x08

Initialization Response

The initialization response byte 0x53 indicates that the Toothpick Slave has initialized correctly. The 16 bytes
of the response including the response length byte will be comprised the of bytes 0x10, 0x53, OX6E, 0x61,
0x76, 0x66, 0x20 followed by the Toothpick Services version number as ASCII characters.

Initialization Response Examples — Version 3.0.00002

Initialization complete | 0x10 then “Slave 3.0.00002”

(binary)

Initialization complete | “<CR><LF>10536E61766620332E302E3030303032<CR><LF>"
(ASCII)

Command / Response User Guide

The following tables of groups of commands and responses show how to achieve common tasks with
Toothpick Slave. The responses are examples and may differ.

Initialization
Response Meaning
10536E61766620332E302E3030303032 | Initialization successful, version 3.0.00002

Setting SDO as digital output

Command Response | Meaning
04022501 0201 Set SDO to output
04032501 0201 Set output value to high

Page 68 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Setting SDO as digital input

Command Response | Meaning
04022300 0201 Set SCL to input
030423 04042300 | Get input value, result 0x00 = low

Setting CCP1 as CCP output

Command Response | Meaning

04020403 0201 Set PWM time base to 3.2us

040205FF 0201 Set PWM period to (OxFF+1) x 3.2us = 819.2us (1220Hz)
04021C02 0201 Set CCP1 to PWM output

05031CO1FF 0201 Set duty cycle to OX01FF x (3.2us / 4) = 408.8ps

Setting AN11 as analog input

Command Response Meaning
04020102 0201 Set ANO and AN1 as analog inputs
030411 05041103EB | Read AN1

Setting AN11, AN10, AN9 as parallel output

Command Response | Meaning
04020603 0201 Set parallel output A to 3-bit
04030605 0201 Set output to 0x05 = 101 binary

Setting AN11, AN10, AN9 as parallel input

Command Response | Meaning
04020613 0201 Set parallel input A to 3-bit
030406 04040603 | Read input value, result 0x03 = 011 binary

Bluetooth slave mode connection

Command Response Meaning
030501 0201 Enters slave mode
090503080046B939B0 | Remote device with ID 80:00:46:B9:39:B0
connects
08051048656C6C6F +Remote device sent ASCIl Hel lo
030504 tRemote device disconnected

1 Note that the master / slave distinction merely refers to which device establishes the connection. Both devices may send
data to the other. Either device may choose to disconnect; in addition, automatic disconnection will occur if they go out of
range of each other. LinkMatik commands generating an OK response (0201) should not be regarded as complete until the

OK response is generated.

Bluetooth inquiry & master mode connection

Command Response Meaning

0405040F (Busy - No immediate Do device inquiry for OXOF seconds
response)
160505080046B939B0466C | Remote device with ID 80:00:46:89:39:B0
65786950616E656C205600 | found, name begins “FlexiPanel”
16050500043E80C44B506F | Remote device with ID 80:00:46:89:39:B0
636B65745F504300656C00 | found, name begins “Pocket PC”
030504 End of device inquiry (command complete)

0905028000 090502800046B939B0 Connect to remote device with ID

Page 69 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

Bluetooth inquiry & master mode connection

Command Response Meaning
46B939B0 00:04:3E:80:C4:4B; connection successful
0805104865 0201 +Send ASCII “Hel 10’ to remote device.
6C6C6F
030506 0201 Enquire link quality

030507FF Quality is reasonably good
030503 030504 t+Disconnect from remote device

0201

FlexiPanel Server (with PMTestRes.FxP User Interface loaded)

Command Response Meaning
030601 0201 Start FlexiPanel Ul Service
09050300043E80C44B | LinkMatik reports remote device connected.
030601 FlexiPanel Service reports FlexiPanel Client
connected. Choose Test dialog displayed.
(Choose Load Recommended Layout from
menu if layout unusual.)
04060301 0201 Show dialog 0x01 (Test Real Time Clock)
0506040109 End test button (ID = 0x0109) pressed
030602 0201 End FlexiPanel service.
030504 LinkMatik reports client disconnecting

User Interface Info

with PMTestRes.FxP User Interface loaded)

Command Response Meaning

030701 1307011002AA0006000 | User interface general information
ABA6000450888420000

04070202 0707020D0004BA User interface dialog 0x02 information

0507030204 130703000100FF4001F | User interface control 0x0204 information
FFFOO0100FF10013A01 Response part |
OF0704000100FF00011 | Response part Il
900000100FF

Control Data Responses (with PMTestRes.FxP User Interface loaded)

Command Response Meaning

04080102 OE080102000000 Fixed date-time control 0x0102 initial value (8
36160D020CD407 bytes of data)

04080101 1608010100005465737420 | Control 0x0101 (“Test real time clock”) text;

5265616C2054696D652043

0B08010110006C6F636B00

first 16 bytes of ASCII text

Remaining bytes of ASCII text

Page 70 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

Guide To MPLAB C18
Development

The developer should be proficient in developing C
applications for PIC18 series devices using
MPLAB and C18 before expecting to benefit from
this section.

Development Environment

The MPLAB development environment and C18
compiler must be obtained separately from
Microchip Technology Inc or one of its distributors.

A debugger or programmer will also be required.
For product development, the Microchip ICD-2 in-
circuit debugger is recommended. For
programming, the following connections must be
made between the ICD2 debugger and Toothpick:

Toothpick pin ICD2
Connection
Vss Vss
Vdd Vdd
NMCLR NMCLR
INTO/PGC PGC
INT1/PGD PGD

The cable from the debugger to the Toothpick
needs to be short. An adapter cable is available
for connecting directly from the ICD2 to a
Toothpick plugged into a breadboard — see the
Ordering Information section.

1. Starting Point Selection

Choose the Firmware Solution which is closest to
the application you wish to develop. Use the Hello
World example if none of the others are
appropriate.

Make sure you can successfully compile the
source code and load it into Toothpick before
proceeding to step 2.

If you prefer to start a new project rather than
working from a firmware solution, be sure to
specify:

e HS oscillator configuration

e Watchdog timer off

e Watchdog timer postscaler 1:128

e Power-up timer on

¢ Oscillator switch enabled

e CCP2 Mux RE7

e Table Write Protect 00200-03FFF enabled

e Table Write Protect 04000-08FFF enabled
e Table Write Protect 08000-OBFFF enabled
e Table Write Protect 00000-001FF enabled
Large Code Model

Large Data Model

Multi-Bank Stack Model

2. User Interface Design

If the FlexiPanel User Interface server is used, the
user interface dialogs should be designed using
FlexiPanel Designer. Do this first to ensure the
interface is user-friendly.

Assuming you are modifying the source code for
an existing Firmware Solution, start with the .FxP
source file for that solution. The output of
FlexiPanel Designer will be a .c source file and
a .h header file, plus a .hex data file if external
memory is used.

3. Project Building

Create an MPLAB project including the following
files:

e The .c and .h files generated by FlexiPanel
Designer, if applicable.

e The file Toothpick.h, which assists in linking
to the Toothpick Services.

e The file Toothpick210.cwhich contains the
user-modifiable portion of the Toothpick
Services.

e The file Toothpick210.1ib which contains
the proprietary portion of the Toothpick
Services.

e The stack and data initialization code
c018itp.c only if you need to make
modifications to it. If you omit it, the linker will
use the standard initialization code cO18itp.o
provided in Toothpick210.1ib.

e The linker script Toothpick210. 1kr, which
allocates memory, including that required for in-
circuit debugging if needed.

e Application-specific .c and .h files, e.g. those
that come with a specific Firmware Solution.

Page 71 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

4. Application-Specific Coding

Write or modify the application-specific program.
The following functions must be provided, even if
they return immediately:

main(), the execution entry point
HighInterrupt(), the fast interrupt handler
Lowlnterrupt(), the slow interrupt handler
ErrorStatus(), the Services error callback
LMTEvent(), the LinkMatik callback
FxPEvent(), the FlexiPanel Ul callback

5. Toothpick Programming

Toothpick is programmed with the executable code,
either using the Wireless Field Programmer or
using MPLAB with a conventional in-circuit
programming device such as the ICD-2 debugger.

Once the developer function main() begins,
events may interrupt control-of-flow, such as data
being received via Bluetooth. Therefore
developer-code execution times are not
guaranteed unless interrupts are suspended.
Equally, callbacks may occur at any time during
the normal flow of developer code. Therefore the

use of Semaphores should be clearly understood.
Refer to the Semaphores, sub-section of the
Toothpick Services Reference.

6. Debugging

The code is debugged using an in-circuit debugger
such as MPLAB ICD-2.

e During debugging, remember that time-critical
events may be missed if a breakpoint is
reached. In particular, any serial data sent
from LinkMatik will then be lost. At the very
least, disable pings if you are using the
FlexiPanel Server to stop the client from
disconnecting.

7. Production Programming

Wireless Field Programming or conventional in-
circuit programming may be used in production.
For low-volume production, Wireless Field
Programming avoids the need for a programming
connector. In high volumes (>100 units per order),
FlexiPanel Ltd can supply Toothpick pre-loaded
with your code as required.

Page 72 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Designing User Interfaces

& Refer to the DARC-II Firmware Solution for
a graphical tutorial on the FlexiPanel
Designer software.

FlexiPanel User Interfaces are designed with
FlexiPanel Designer. This is software freely
available from www.FlexiPanel.com. FlexiPanel
Designer can also simulate user interfaces on
remote client devices.

This section provides an overview of the user
interface designs possible with Toothpick. For full
details, consult the FlexiPanel Designer software
documentation.

If a custom application is being developed using
MPLAB C18 then the user interface is transferred
to Toothpick as computer-generated C files which
are included during compilation.

If a user interface is being developed for a
Firmware Solution such as the Serial Adapter or
DARC module, it is programmed directly from
FlexiPanel Designer into Toothpick using a
Bluetooth connection.

FlexiPanel Bluetooth Protocol

FlexiPanel client devices can connect to the
FlexiPanel BASIC Stamp Programmer (the
‘Server’) at any time. Once connected, the server
tells the client to show the user interface on its
display. Both the client and the BASIC Stamp can
modify the user interface controls at any time.

The client or Toothpick may choose to disconnect.
Additionally, the link may be dropped if the devices
go out of range of each other. The state of the
controls is retained by the server so that if the
client reconnects, or another client connects, the
control panel will be in the same state as it was
when it was last modified.

Devices incorporating FlexiPanel Servers must be
designed taking into account the possibility of a
dropped connection. Specifically, no action should
be taken which relies on a client's ability to
maintain a connection. If FlexiPanel is used to
operate machinery, for example, the Toothpick
should provide a failsafe mode in case the
connection is dropped.

The communication standard used by Toothpick in
order to communicate with clients is FlexiPanel
Protocol 3.0. Some client software may use

FlexiPanel Protocol 2.3, which cannot display
Image controls.

Introduction to FlexiPanel Controls

A variety of control types are provided by
FlexiPanel. These include controls familiar to
Windows users and others that are particularly
appropriate for FlexiPanel technology.

FlexiPanel clients are required to provide all the
requested controls in some form or other. Since
the user interface may vary from one FlexiPanel
client to another, the appearance may vary.

If the developer expects a device to be used in
conjunction with a specific type of FlexiPanel client
(e.g. Pocket PC), the appearance on those
devices may be specified in more detail from within
FlexiPanel Designer.

Some controls are either modifiable or non-
modifiable. If a control is non-modifiable, the
server may change its value but the client may not.

Dialogs

Controls are arranged in groups called dialogs and
Toothpick can switch between dialogs as required.

Text Control

The text control contains a text string. It will have
a fixed maximum length, specified when the
control is created.

A text control may have password style, in which
case the text entered in the control is not readable
by the user.

Button Control

A button control registers when a button is pressed.
Latch Control

A latch control stores a binary (on/off) value.
Latches may be arranged in groups so that when
one latch is turned on the others are turned off.
Password Control

A password control stores a password and has an
open and closed state. In the closed state, the

user must enter the password to set it to the open
state.

Page 73 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

In the open state, the password control may be
returned to the closed state at any time.

It is possible to specify that password may be
modified by the user once the control is in the
open state. A master password may also be
provided.

Other controls may be directly linked to the
password control so that they are only visible when
the password is open.

Passwords are limited to 17 Unicode characters or
34 ASCII characters, including zero terminator.

Number Control

A number control stores a numeric value. It is
essentially a signed four-byte integer, but its
decimal place may be shifted left or right in order
to represent any floating-point value.

Matrix Control

A matrix control stores an array of numbers.
These might be displayed as a table or a chart. In
this release of FlexiPanel, the values are not
modifiable by the client.

List Control

A list control allows one item to be selected from a
list. The contents of the list may not be modified.

Section Control

A section control acts like a pop-up menu.
Controls enclosed within a section control are only
visible when the section control is opened.

Controls enclosed inside a closed section control
are not transmitted to the client, thereby
minimizing communication time.

Section controls predate the dialog facility in
Toothpick. In general, Dialog controls are a more
flexible method for managing user interface
appearance.

DateTime Control

A DateTime control stores a DateTime value, i.e.
second, minute, hour, date, day-of-week, month
and year.

The Real Time Clock option allows one Date Time
control to be wupdated by the FlexiPanel
Programmer’s on-board Real Time Clock. To

keep the communications burden moderate, the
clock is updated only every five seconds. If this
control's values are modified by a client or
Toothpick, the Real Time Clock’s time is updated
accordingly.

Message Control

A message control displays a message on request.
If the client is Protocol 3.0 compatible, the
message can have a response, e.g. OK or Cancel.

Blob Control

The blob (Binary Large Object) control allows
client and server to pass binary objects to each
other. It is intended primarily for future expansion
and customization. Due to the limitations of some
client devices, a client is not obliged to support all
features associated with this control; some clients
may simply ignore it.

In this release of FlexiPanel, the only use of the
blob object is to pass the name of a URL (i.e. web
page address) to the client.

Files Control

The files control allows Toothpick to send files to
the Client. The primary use of this feature is to
pass HTML files (and related images) so a web
browser on the client could display the files. Since
the files are stored on Toothpick, an internet
connection is not required.

The files control is intended to allow Toothpick to
upload an instruction manual to the client. In
practice, the files might amount to tens or
hundreds of kilobytes, so external memory would
be required.

Image Control

The image control displays a rectangular image on
the client screen. Currently the images are non-
modifiable and must be in GIF format. To reduce
storage requirements, 16-color GIFs are
recommended. Image controls can be made
‘clickable’ and can be treated as buttons.

Image controls were introduced with FlexiPanel
version 3.0. If the client connected is version 2,
the image control will not be transmitted. Some
clients (such as phones) may not be able to
display the image and may just depict it as a
button, labeled with the control’'s name, instead of
the image.

Page 74 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Toothpick Services Reference

Toothpick Services are pre-installed in the protected memory region 0x0000 to OxBFFF and are not available
if you choose to overwrite this memory. Certain functions are more suited to inline compilation and are
macros defined in the file Toothpick.h.

Examples of the use of most services can be seen in the LinkMatik Diagnostic and Toothpick Diagnostic
Firmware Solutions.

Analog I/O

Toothpick’s PIC18LF6722 / 6722 / 67J10 microcontroller supports 12 channels of 10-bit analog to digital
conversion. The Toothpick Diagnostic Firmware Solution provides an example of its use.

The following macros are defined in Toothpick.h:

Definition Function

ADConverterOnlObit Turn on A to D converter for 10-bit data conversion
ADConverterOn8bit Turn on A to D converter for 8-bit data conversion
ADConverterOff Turn off A to D converter

VRefNeglsVss

Sets negative voltage reference to Vss

VRefNeg I sAN2

Sets negative voltage reference to AN2

VRefPoslIsvdd

Sets positive voltage reference to Vdd

VRefPosIsAN3

Sets positive voltage reference to AN3

SetAnalogNone Sets all ADx pins as digital 1/0

SetAnalogADO Sets ADO as analog input and all other ADx pins as digital I/O
SetAnalogADOtoAD1 Sets AD0O and AD1 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD2 Sets ADO to AD2 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD3 Sets ADO to AD3 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD4 Sets ADO to AD4 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD5S Sets ADO to AD5 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD6 Sets ADO to AD6 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD7 Sets ADO to AD7 as analog and all other ADx pins as digital I/O
SetAnalogADOtoADS Sets ADO to AD8 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD9 Sets ADO to AD9 as analog and all other ADx pins as digital I/O
SetAnalogADOtoAD10 Sets ADO to AD10 as analog and AD11 pins as digital 1/0
SetAnalogADOtoAD11 Sets ADO to AD11 as analog inputs

SetADChan(ch)

Selects ADch pin for A to D conversion. A delay is required
between selecting the channel and starting conversion. As a rule
of thumb, call CyclesDelayl6plusl6times(9) or consult
PIC18LF6722 / 6722 / 67J10 microcontroller documentation

StartAtoD Starts A to D conversion
AtoDInProgress Nonzero until A to D conversion is finished
AwaitAtoDComplete Does not continue until A to D conversion is finished

GetADResult8bit(uData)

Places 8-bit A to D result in uData

GetADResultlObit(uData)

Places 10-bit A to D result in uData

Example:

// Initialization
SetAnalogADOtoAD11;
ADConverterOnlObit;
VRefNeglsVss;
VRefPoslsVdd;

Page 75 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

// Conversion
unsigned char Channel = 1;
unsigned long ADResult;

SetADChan(Channel); // select a to d channel
CyclesDelayl6plusl6times(9); // 1_6us delay to charge S & H cap
StartAtoD; // start a to d conversion
AwaitAtoDComplete; // await end of conversion
GetADResultl0Obit(ADResult); // get result

ADResult (ADResult*5000)/1024; // convert to millivolts (5V supply)

LinkMatik Control

LinkMatik Management

LinkMatik is connected to USART1 on the PIC18LF6722 / 6722 / 67J10. The following definitions can be
used to control LinkMatik directly.

AwaitLMTComplete()

LMTCommand

The service LMTCommand sends a command to the LinkMatik module:

pauses until the previous LinkMatik command is complete; in the case of

a LMTC_Connect, this does not mean the connection has completed yet;
you must await an LMTE_Connected or LMTE_Disconnect event.

void LMTCommand (unsigned char CommandID, void *pData, rom void *pDataR)

LMTCommand will return immediately the command has been sent. Any response from LinkMatik will be in the
form of a LMTEvent callback. The commands are:

CommandID (hex
value)

Command description

*pData (or *pDataR if pData is
null pointer)

LMTC _Inquiry
(01)

Search for other Bluetooth devices. Each
device found generates a LMTE_Found event.
Finally a LMTE_OK event generated.

Inquiry duration in units of 1.28
seconds as ASCII hexadecimal (zero
terminated char{]), range “1” to “8”

LMTC_Connect

Establish serial port service connection with

Remote device Bluetooth ID

02) remote device (unsigned char[6])
LMTC_Disconnect | Disconnect serial connection Logical channel 0-3 (as pData, i.e.
(03) cast to void *)

LMTC_SetLink
(D)

Sets the state of an open channel

Logical channel 0-3 (as pData, i.e.
cast to void *)

pDataR is “MASTER”, “SLAVE”,
“ACTIVE”, “PARK 1000”, or
“SNIFF 0 20”

LMTC_Sleep (05)

Enters aggressive power saving mode.
Returns to normal power mode when a
command is give or a Bluetooth event occurs

Not used

LMTC_BER (06)

Request bit error rate of an open channel

Logical channel 0-3 (as pData, i.e.
cast to void *)

LMTC_RSSI (07)

Request signal strength of an open channel

Logical channel 0-3 (as pData, i.e.
cast to void *)

LMTC_Generic
(FF)

Send generic command string to LinkMatik

Command string

Page 76 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Examples:

unsigned char pBTAddr[] = { Ox01, 0x23, 0x45, 0x67, 0x89, OxAB };
LMTCommand(LMTC_Connect, pBTAddr, 0); // Connect

LMTCommand(LMTC_Inquiry, 0, (rom void *) 5");
LMTCommand(LMTC_SetLink, (void *) 2, (rom void *) "PARK 1000");
LMTCommand(LMTC_Sleep, 0, 0);
LMTCommand(LMTC_RSSI, 0, (rom void *) "0");
LMTCommand(LMTC_BER, 0, (rom void *) "1");
LMTCommand(LMTC_Disconnect, (void *) 2, 0); // Disconnect channel 2
LMTCommand(LMTC_Generic, 0, (rom void *) "List");
Notes:

LMTC_Inquiry: Inquiry time is a tradeoff between speed and finding all devices. Searching for other
devices using the LMTC_ Inquire command will not necessarily find all available devices if the inquiry time is
less that 8 units.

LMTC_Connect: LinkMatik actively attempts to connect to the remote device specified by the remote device
ID. When the command has completed processing, an LMTE_OK event will be generated with pDatal equal
to the logical channel which will be used if connection is successful. This will be a value from 0 to 3. If
connection fails, a LMTE_Disconnect event will be generated instead .

LMTC_SetLink: Selects link-specific power modes (Active, Sniff and Park) and piconet master / slave role.
(Only a master can have multiple connections.).

LMTC_Sleep: Tells LinkMatik to sleep when idle. If connections exist, they must be operating in Sniff mode
otherwise LinkMatik will not have time to sleep. Approximately 50ms is required to exit sleep mode.

LMTC_Inquiry: Inquiry time is a tradeoff between speed and finding all devices. Searching for other
devices using the LMTC_ Inquire command will not necessarily find all available devices if the inquiry time is
too short.

Bluetooth ID: The Bluetooth ID in an unsigned char[6] array. Big-endian format (i.e. MSB first) is
used in a departure from the C18 standard so that the array linearly matches the 01:23:45:67:89:AB form of
Bluetooth address notation.

LMTC_Signal, LMTC_BER: The LMTC_B and LMTC_BER commands give an idea of the signal strength and
quality. The return values via the LMTE_Signal and LMTE_BER LinkMatik events. The LMTE_Signal return
value indicates the signal strength in dB as a decimal ASCII string. The LMTE_BER return value indicates the
percentage bit error rate as a decimal ASCII string.

LMTC_Generic: Any LinkMatik command as specified in LinkMatik documentation.

LMTEvent

The callback LMTEvent is called when an event happens on the LinkMatik module:

Page 77 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

void LMTEvent(unsigned char EventlD, char *pDatal, char *pData2)

EventlD identifies the event that happens. pDatal and pData2 may contain related information depending
on the nature of the event:

EventlID Event description *pDatal *pData2
(hex value)
LMTE_OK (00) Inquiry or connection Not used Not used

complete
LMTE_Syntax Command syntax error Not used Not used
(02)
LMTE_Connected | Connection established Remote device Bluetooth ID Logical channel 0-3
(03) (unsigned char[6]) (cast to void *)
LMTE_Disconnect | Connection terminated or Logical channel 0-3 (cast to Error reason in ASCII
04) failed to connect void *) (“0” for no error)

LMTE_Found (05)

Device found during
inquiry. One event per
device found.

Remote device’s Bluetooth ID
(unsigned char[6])

Remote device’s name
(zero terminated
char[])

LMTE_Paired
(06)

New remote device
successfully paired and
added to pair list

Remote device’s Bluetooth ID
(unsigned char[6])

Link key in ASCII hex

LMTE_BER (07) Bit error rate result Bit error rate as ASCIl value Not used
from 0.0000 to 100.0000 (zero
terminated char[])

LMTE_RSSI (08) | Signal strength result Signal strength as ASCII value | Not used
from +20 to —128 (zero
terminated char[])

LMTE_Generic Other response from Response text (zero terminated | Not used

(FF)

LinkMatik, e.g. from
LMTE_Generic command

char[])

Example:

void LMTEvent(unsigned char EventlD, void *pDatal, void *pData2)

{

// syntax error?
if (EventlD==LMTE_Error || (EventlD==LMTE_Error) Reset();

// store channel number quality in chan

if (EventlD== LMTE_Connected) chan =

Notes:

(unsigned char) pDatal;

LMTEvents may occur at any time, so care should be taken if modifying static values other than semaphores
which are also used by your main code.

LMTE_Connected, LMTE_Disconnect: The LinkMatik transmit buffer is reset if a disconnect message is

received.

LMTE_Generic: Any other response from LinkMatik, usually as a result of a LMTC_Generic command.

LMTE_Syntax errors are generated if the request does not make logical sense, for example applying

LMTC_SetLink to a channel with no associated connection.

LMTE_Disconnect message.

Other failures are reported as an

Page 78 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

LinkMatik Serial Communications

LinkMatik serial communications services allow you to send data to and receive data from Bluetooth devices
that LinkMatik is connected to. These services are not compatible with the FlexiPanel User Interface services
— you can use one or the other, but not both at the same time.

Toothpick implements buffered I/O with fixed buffers of 256 bytes.

¢ RAM locations 0x8CO to Ox8FF are reserved for the receive channel buffer
¢ RAM locations 0x900 to Ox9FF are reserved for the receive buffer

Toothpick employs the buffers as circular buffers and the following variables and macros are defined in
Toothpick.h:

Definition Function

LMTRxStart Any data remaining in the buffer starts at pRxBuff[LMTRxStart].

LMTRXEnd Any data remaining in the buffer ends at pRxBuff[LMTRXEnd], having
wrapped around from the end to the beginning if necessary.

LMTRxXNChar Number of characters in the receive buffer

LMTRXEmpty True if the receive buffer is empty

ResetLMTRx Resets state of receive buffer (all data will be lost)

LMTRxLoc (1) Address of the ith element in the circular receive buffer

LMTRxCh Equivalent to LMTRxLoc(0)

LMTRxSource(i) Logical channel which of the device which transmitted the data LMTRxLoc (i)

LMTRxChSource Equivalent to LMTRxSource (0)

To read and write data, the following macros and services are provided:
LMTTransmit

The LMTTransmit service transmits serial data. It does not return until all the data has been conveyed to the
LinkMatik for transmission.

Bool LMTTransmit(unsigned char *pTxDataR, unsigned char *pTxData,
unsigned char nBytes, unsigned char msTimeOut,
unsigned char LogicalChannel)

If pTxDataR is non-zero, the data is sourced from that ROM address; otherwise it is sourced from the RAM
address pTxData. nBytes should contain the number of bytes to be transmitted, or zero if the data is a
zero-terminated string. The number of bytes to be transmitted should be 100 bytes or less.
LogicalChannel shall contain the logical channel (0-3) on which to transmit the data.

If the LinkMatik flow control blocks transmission, LMTTransmit will wait for up to msTimeOut for it to clear. If
at the end of that period there is still insufficient space, it will return with the value False, without adding any
data to the transmit buffer. In addition, if msTimeOut was an odd number, a ERR_TXTIMEOUT error status
event will be generated before returning. If msTimeOut is zero, LMTTransmit will not return until
transmission is complete.

LinkMatik has a tendency to translate the data from each LMTTransmit command into a single Bluetooth
frame. To achieve high data rates, as much data should be contained in each LMTTransmit command as
possible. Alternatively, you can ‘batch transmit’, i.e. advise Toothpick in advance that you are about to call
LMTTransmit several times in succession for a single channel. It will then concatenate the data and send it in
as few frames as possible. To do this, prior to transmitting the data, call LMTTransmit once with both
pTxDataR and pTxData equal to zero and nBytes equal to the total number of bytes, up to 65535, which
are to be transmitted.

Page 79 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Example:
LMTTransmit(0, 0, 3000, 0, 0); // expect 3000 bytes
For (i=0; i<1500; i++)
{

}

LMTTransmit(0, pBuffl, 2, 0, 0);

If this technique is used, the logical channel should remain the same throughout the sequence and the actual
number of bytes transmitted must exactly match the number of bytes expected. (If it does not, an
ERR_BATCH_MISMATCH error will be generated.)

LMTReceive

Bool LMTReceive(unsigned char *pRxData, unsigned char nBytes,
unsigned char msTimeOut)

LMTReceive service takes nBytes of serial data from the receive buffer and places them in pRxData. If it
does so successfully, the return value is True. If the receive buffer does not contain sufficient data nBytes,
it will wait for up to msTimeOut milliseconds for sufficient data. If at the end of that period there is still
insufficient data, LMTReceive will return with the value False, leaving the receive buffer and pRxData
untouched; in addition, if msTimeOut was an odd number, a ERR_RXTIMEOUT error status event will be
generated before returning. If msTimeOut is zero, LMTReceive will not return until sufficient data is in the
buffer.

LMTReceive is provided for backward compatibility. The macros LMTRxLoc, LMTRxCh, LMTRxSource,
LMTRxChSource, LMTRxAdvance and LMTRxAdvanceCh are preferred for speed.

LMTRxAdvance, LMTRxAdvanceCh

LMTRxAdvance(unsigned char i)
LMTRxAdvanceCh

The LMTAdvance macro advances the receive buffer start pointer LMTRxStart by i bytes. The
LMTAdvanceCh macro advances the receive buffer start pointer LMTRxStart by 1 byte. They are high-
speed macros and no buffer underrun checks are made. Use the LMTRxWaitBytes macro or LMTRXEmpty
value to test whether there is any data to receive. 1 must be of type unsigned char — this is a macro and no
type casting is done.

Examples:

if (ILMTRXEmpty)

{
char ch;
ch = *LMTRxCh; // Fetch a character
LMTRxAdvanceCh;

b

LMTRxLoc, LMTRxCh

unsigned char * LMTRxLoc(unsigned char i)
The LMTRxLoc (i) macro is a pointer to the memory location of the ith character in the receive buffer after
the start point LMTRxStart, accounting for the fact that the buffer is circular. 1 must be of type unsigned
char — this is a macro and no type casting is done.

LMTRxLocCh is equivalent to LMTRxLoc(0) .

Page 80 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

LMTRxLoc / LMTRxCh and LMTRxAdvance / LMTRxAdvanceCh provide a memory- and time-efficient way of
reading and discarding data in the buffer. They are high-speed macros and no buffer underrun checks are
made. Use the LMTRxWaitBytes macro or LMTRXEmpty value to test whether there is any data to receive.
1 is zero-based, so LMTRxLoc(0) so is the next character to be read from the receive buffer.

LMTRxSource, LMTRxChSource

unsigned char LMTRxSource(unsigned char i)

The LMTRxSource (i) macro computes the source logical channel of the ith character in the receive buffer
LMTRxStart, accounting for the fact that the buffer is circular. T must be of type unsigned char — this is a
macro and no type casting is done.

LMTRxChSource is equivalent to LMTRxSource (0).

LMTRxWaitBytes

void LMTRxWaitBytes(unsigned char i)
The LMTRxWaitBytes(i) macro waits until there are i characters in the receive buffer. It can be called
before LMTRxAdvance to avoid buffer underrun. . 1 must be of type unsigned char — this is a macro and no
type casting is done.

Bluetooth Device Classes

The 3-byte Bluetooth device class, specified in the Toothpick Settings as the 6-hex-digit zero terminated
ASCII string pBTClass, determines what the module claims to be when other Bluetooth devices ask it. It
affects the icon that appears on other Bluetooth devices and may affect the device discovery function. In
particular some mobile phones only look for certain sub classes, e.g. headsets.

The device class consists of three elements: the services available, the major device class and the minor
device class. LinkMatik can be programmed to claim to be capable of any number of services, however
exactly one Major Class must be specified. The minor device class is an optional addition, defining a subset
of the major device class.

Page 81 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Services and Major Device Class

The first two bytes of the device class contain the services information and the major device class. They are
calculated by arithmetically adding together any number of services and one Major Device Class.

Byte A Byte B Description Data Type
0x00 0x20 Limited discovery mode (default)
0x01 0x00 Positioning
0x02 0x00 Network (default)
0x04 0x00 Rendering
0x08 0x00 Capturing Services
0x10 0x00 Object transfer (default)
0x20 0x00 Audio
0x40 0x00 Telephony (default)
0x80 0x00 Information
0x00 0x01 Computer
0x00 0x02 Phone (default)
0x00 0x03 LAN
0x00 0x04 AV . .
0x00 0x05 Peripheral Device Major Class
0x00 0x06 Imaging
0x00 Ox1F Uncategorized
0x00 0x00 Miscellaneous Device Class
Example

If LinkMatik is required to claim network and object transfer and information services, and appear as a
peripheral then the device configuration bytes are:

Byte A Byte B

0x02 (0000 0010) 0x00 (0000 0000) Network Services

0x10 (0001 0000) 0x00 (0000 0000) Object transfer Services

0x80 (1000 0000) 0x00 (0000 0000) Information Services

0x00 (0000 0000) 0x05 (0000 0101) Peripheral Device Major Class
Resulting bytes (adding together the above)

Byte A Byte B

0x92 (1001 0010) 0x05 (0000 0101)

Page 82 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Minor device class

The last byte defines the minor device class. lIts interpretation depends on the major device class specified as
follows. (Toothpick.h provides definitions for these values.)

Byte C Computer Phone Major LAN Major AV Major
Major Class Class Class Class
0x00 Other Other LAN 0% utilized Other
0x04 Desktop Cellphone (default) Wearable headset
0x08 Server Cordless phone Hands free device
0x0C Laptop Smartphone
0x10 Handheld Gateway / modem Microphone
0x14 Palm-sized ISDN Loudspeaker
0x18 Wearable Headphones
0x1C Walkman
0x20 LAN 1-17% utilized Car audio
0x24 Set top box
0x28 Hi-Fi
0x2C VCR
0x30 Video camera
0x34 Camcorder
0x38 Monitor
0x3C Monitor with audio
0x40 LAN 17-33% utilized | Conferencing device
0x48 Toy
0x60 LAN 33-50% utilized
0x80 LAN 50-67% utilized
0xA0 LAN 67-83% utilized
0xCO0 LAN 83-99% utilized
0xEOQ LAN 100% utilized
Byte C Peripheral Device Class Imaging Device Class Uncategorized /
Bitwise-OR together one t value and Bitwise-OR together as Miscellaneous Device
one t value many values as apply Class
0x00 No keyboard or pointing device t Uncategorized /
Miscellaneous
0x00 Other 1
0x04 Joystick
0x08 Gamepad t
0x0C Remote control
0x10 Sensing device 1 Display
0x14 Digitizer ¥
0x18 Card readert
0x1C
0x20 Camera
0x40 Keyboard but no pointing device t Scanner
0x80 Pointing device but no keyboard t Printer
0xCO0 Keyboard and pointing device t

Page 83 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

Example

If LinkMatik is required to claim network and object transfer and information services, and appear as a remote
control peripheral with keyboard but no pointing device, byte C would be 0x4C and the complete device class
string pBTClass would be ""92054C"".

Callbacks

When events occur that Toothpick wants to tell you about, it calls a callback function. Callbacks are functions
which you must provide, even if you do nothing in them. The “Hello World” Firmware Solutions show the
minimum your application needs to do in terms of callback functions.

Callbacks generally occur while Toothpick is servicing a low-priority interrupt. Therefore your callback function
can’t do anything which relies on interrupts being responded to. This includes loop waiting for LMTC_Events.
(It does not include most LMTCommands and FxPCommands which transmit data only.) If necessary, set a
semaphore inside the callback then return from the callback function. From inside your main code, inspect
the semaphore value frequently and respond appropriately when it is set. (See the Semaphores section for
an example.)

The callback functions are ErrorStatus, LMTEvent and FxPEvent.

ErrorStatus

ErrorStatus(unsigned char ErrNum)

Called if an error happens. Unless otherwise documented, errors are viewed as fatal and if you return from

ErrorStatus() results may be unpredictable, particularly if ErrorStatus or any of the functions it calls
use static variables. ErrNum indicates the exact nature of the error and will be one of the following:

Name Value Explanation

ERR_LMTATBUFFOVERRUN 0x01 AT response received before the previous one was
processed.

ERR_LMTFRAME 0x02 Framing error on LinkMatik UART. Most likely the

clock speed is wrong or a LinkMatik with incorrect
default baud rate has been installed.
ERR_LMTOVERRUN 0x03 LinkMatik input overrun — previous received character
was not added to buffer by the time the next character
was received.

ERR_NOL INKMATIK 0x04 LinkMatik not initialized yet. May not be installed.
ERR_WAITINGPREV 0x05 Still awaiting completion of previous command
ERR_LMTBUFFOVERRUN 0x06 LinkMatik receive buffer overrun — no room left in

receive buffer

ERR_FLEXIPANELSERVICE 0x07 Operation not possible because FlexiPanel user
interface service is in operation
ERR_NOFLEXIPANELSERVICE | 0x08 Operation not possible because FlexiPanel user
interface service is not in operation

ERR_RXTIMEOUT 0x09 LMTRecei ve timed out and the timeout value was odd
(i.e. not even). If you return from ErrorStatus(),
results LMTReceive will return with return value
False.

ERR_TXTIMEOUT Ox0A LMTTransmit timed out and the timeout value was
odd (i.e. not even). If you return from
ErrorStatus(), results LMTReceive will return with
return value False.

ERR_MEMORYFAILURE 0x0B SetBytes attempted to write verifiably to nonvolatile
memory 100 times and failed. (Toothpick Lite tries
twice only.)

Page 84 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

ERR_ARGUMENT INERROR

0x0C
make sense.

An argument passed to Toothpick function does not

ERR_SYNCERROR

0x0D LinkMatik MUX mode sync failure.

ERR_INITFAIL

OxO0E Initialization failure.

ERR_DOUBLETRANSMIT

OxOF
something at the same time as another part
code. To avoid this problem:

enable them afterwards.

An interrupt attempted to transmit to the LinkMatik

1. Never call LMTTransmit or an LMTCommand
or an FxPCommand during Hilnterrupt

2. Ifyou call LMTTransmit, LMTCommand or
FxPCommand during Hi Interrupt in your
main program loop (i.e. not in Lolnterrupt),
disable low interrupts beforehand and re-

of the

ERR_BATCH_MISMATCH

0x10 Batch transmit data did not match expected

length

batch

LMTEvent

LMTEvent(unsigned char *ResponselD, unsigned char *BTAddr, char *szName)

Called when an event happens on the LinkMatik module. Detailed in the LinkMatik section.

FxPEvent

void FxPEvent(unsigned char EventlD, char *pData)

Called when a FlexiPanel user interface event happens. Detailed in the FlexiPanel Server section.

Comparators

The PIC18LF6722 / 6722 / 67J10’s Dual Analog Comparators are available for developer use on certain ANx
pins. The following macros are provided in Toothpick.h:

Macro Effect

CmpsOff Comparators not configured

CmpsBuffer Digital output AN7 equals value of digital input AN11,
Digital output AN6 equals value of digital input AN9
(also AN10 outputs 2.5V)

Cmpsinvert AN7 outputs the digital inverse of input AN11,
ANG outputs the digital inverse of input AN9
(also AN10 outputs 2.5V)

SetCmpsintOnChange | PIR2bits.CMIF generated if AN11 or AN9 changes

(iPriority) state (must be cleared in software). Set iPriority

to 1 for high priority, 0 for low priority.

Configuration Settings

Toothpick assumes the following configuration settings on the PIC18LF6722 / 6722 / 67J10:

HS oscillator configuration
Watchdog timer off

Watchdog timer postscaler 1:128

Power-up timer on
Oscillator switch enabled
CCP2 Mux RE7

Page 85 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

Table Write Protect 00200-03FFF enabled
Table Write Protect 04000-08FFF enabled
Table Write Protect 08000-0BFFF enabled
Table Write Protect 00000-001FF enabled

Count, Capture and Compare

The PIC18LF6722 / 6722 / 67J10’s Capture and Compare |/O are available for developer use on the CCP
pins. Developers will need to consult PIC18LF6722 / 6722 / 67J10 documentation to use this feature.

The PIC18LF6722 / 6722 / 67J10’s TimerQ Counter is also available for developer use. Developers will need
to consult PIC18LF6722 / 6722 / 67J10 documentation to use this feature.

Copy Protection
For product releases, you are advised to set the copy protect bits so that it is difficult to copy your firmware.

FlexiPanel Ltd provides the Toothpick Services library exclusively for use with Toothpick products that it
supplies. It will only work with Bluetooth components supplied by us. To protect against reverse engineering,
some of the copy protection features in the Toothpick only trigger under certain conditions. If the Toothpick
Services library is used with Bluetooth components that are not supplied by us, it may work initially but cease
to operate at a later date.

Date-Time Values

The real time clock, date time controls and the matrix control (date-time X axis style) use the 8-byte
DateTimel structure defined in Toothpick.h. It consists of the following fields:

Field name Datatype Contains Range

sec byte Second 0-59

min byte Minute 0-59

hour byte Hour 0-23

date byte Date 1-31

dow byte Day of 0 — 6 Sunday to Saturday respectively
week 7 = Unknown

month byte Month 1-12

year uint16 Year 0 — 65535

Depending on the interpretation of the structure, not all date-time fields need be valid. For example, a date-
time field may represent a birthday, in which case only date and month would be valid; an alarm time, in which
hour and minute are valid, etc.

A CalcbDayOfWeek function is provided in Toothpick.h to calculate the day of week for any given date.
(See Utility Functions section.)

Digital 1/0 (Bitwise)

All pins except Vin, Vdd, Vss and NMCLR may be configured as single bit digital 1/O provided they are not
used for another function.

Pin Direction setting variable | Value storing variable
ANO DirANO ANOPin
AN1 DirAN1 AN1Pin
AN2 DirAN2 AN2Pin
AN3 DirAN3 AN3Pin
AN4 DirAN4 AN4Pin

Page 86 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Pin Direction setting variable | Value storing variable
ANS DirAN5S AN5Pin
ANG DirAN6 AN6Pin
AN7 DirAN7 AN7Pin
AN8 DirAN8 AN8BPIN
AN9 DirAN9 AN9PIN
AN10 DirAN10 AN10PiInN
AN11 DirAN11 AN11Pin
CCP1 DirCCP1 CCP1PiInN
CCP2 DirCCP2 CCP2Pin
CCP3 DirCCP3 CCP3Pin
CCP4 DirCCP4 CCP4Pin
CCP5 DirCCP5 CCP5Pin
INTO DiriINTO INTOPin
INT1 DiriINT1 INT1Pin
RxD DirRxD RxDPin
SCL DirSCL SCLPin
SDA DirSDA SDOPiInN
SDO DirsSDO SDAPIN
TxD DirTxD TxDPin

To set or read the I/0O direction, set the direction setting variable as appropriate using the constants
Dirlnput and DirOutput. For example:

DirRxD = Dirlnput; // RxD is a digital input

DirTxD

DirOutput; // TxD is a digital output

To retrieve an input or output value, or set an output value, use the value storing variable as appropriate, for
example:

if (RxDPin == 1) // if RxD is at logic 1
TXDPin = 0; // set TxD to logic O

Digital 1/0O (Parallel)

Parallel 1/0 reads or sets multiple 1/0O bits in one instruction. The following can provide parallel I/O provided
the pins are not used for another function. Only one each of PAx, PBx and PCx may be used at a time.

Name | Bits | Pins (MSB first) Direction setting Value setting Value getting
function function variable
PA7 7 AN11 — AN5 DirPA7(char) | SetPA7(char) | GetPA7
PAG 6 AN11 — AN6 DirPA6(char) | SetPA6(char) | GetPA6
PA5 5 AN11 — AN7 DirPA5(char) | SetPA5(char) | GetPA5
PA4 4 AN11 — AN8 DirPA4(char) | SetPA4(char) | GetPA4
PA3 3 AN11 — AN9 DirPA3(char) | SetPA3(char) | GetPA3
PA2 2 AN11,AN10 DirPA2(char) | SetPA2(char) | GetPA2
PBS 5 AN4 — ANO DirPB5(char) | SetPB5(char) | GetPB5
PB4 4 AN4 — AN1 DirPB4(char) | SetPB4(char) | GetPB4
PB3 3 AN4 — AN2 DirPB3(char) | SetPB3(char) | GetPB3
PB2 2 AN4 , AN3 DirPB2(char) | SetPB2(char) | GetPB2
PC5 |5 CCP5,CCP4 ,RxD,TxD,CCP3 DirPC5(char) | SetPC5(char) | GetPC5
PC4 |4 CCP5,CCP4 ,RxD,TxD DirPC4(char) | SetPC4(char) | GetPC4
PC3 3 CCP5,CCP4,RxD DirPC3(char) | SetPC3(char) | GetPC3
PC2 2 CCP5,CCP4 DirPC2(char) | SetPC2(char) | GetPC2

Page 87 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

To set or read the I/0O direction, set the direction setting function as appropriate using the constants
DirParlnput and DirParOutput. For example:

DirPA7(DirParlnput); // Set up PA7 digital input
DirPC4(DirParOutput); // Set up PC4 digital output
To retrieve an input or output value, use the value getting variable as appropriate, for example:

if (GetPB3 == 0x03) // if AN1 is O, AN2 is 1, AN3 is 1,
// e.g. binary 011 = 0x03

To set an output value, use the value getting function as appropriate, for example:

SetPA4(0x09); // set AN8 to 1, AN9 to O, AN10 to O, AN1l to 1
// e.g. binary 1001 = 0x09

FlexiPanel Server

Overview

The FlexiPanel server allows remote devices such as Windows PCs, handhelds and cell phones to display
user interfaces (Uls) on its behalf. It uses the FlexiPanel Bluetooth Protocol to transmit the required Ul to the
remote device. The remote device needs to run the FlexiPanel Client software which is freely available from
FlexiPanel Ltd. The Client software does not require customization, since the Ul specifications are stored on
the server, and transmitted to the client when it connects. The server is not concerned about the type of client
which connects — it treats them equally.

The Ul specification is compiled using FlexiPanel Designer software which is freely available from FlexiPanel
Ltd. Itis stored from memory location 0x010000 onwards. (The linker will fit the developer’s code around it.)

To set and retrieve control values, macros are defined in the header file generated by FlexiPanel Designer.
FxPCommand
The service FxPCommand sends a command to the FlexiPanel server:

void FxPCommand(unsigned char CommandlD, unsigned short IDval, void * iVal)

FxPCommand will return immediately the command has been processed. Asynchronous responses from the
FlexiPanel user interface server will be in the form of FXPEvent callbacks. The commands are:

CommandID (hex value) | Command description IDVal pval
FxPC_Start (01) Starts FlexiPanel server ignored ignored
FxPC_Finish (02) ignored ignored
FxPC_SetDialog (03) Selects a new dialog to display | Dialog index number ignored
(high byte ignored)
FxPC_Disco (04) Disconnects currently ignored ignored
connected remote device
FxPC_CtlUpdate (05) Refreshes the value of a control | ID of updated control | ignored
on the client
FxPC_PartUpdate (06) Refreshes the value of a single | ID of updated control Row number (short
matrix row on the client cast to void *)
FxPC_SetProps (07) Sets control properties and ID of updated control | New properties
color (unsigned long *)
FxPC_InitData (09) (Re-) initializes control data ignored ignored

Page 88 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

CommandID (hex value) | Command description IDVal pval
= (0A) Prepares to send multiple Number of ignored
FxPC_CtlUpdate updates ina | FXPC_CtlUpdate
single message commands to follow
FxPC_MultiPartUpdate Prepares to send multiple Number of ignored
(0B) FxPC_PartUpdate updatesin | FXPC_PartUpdate
a single message commands to follow
FXPC_MultiPropsUpdate | Prepares to send multiple Number of ignored
(9 FXPC_SetProps updatesina | FXPC_SetProps
single message commands to follow
Examples:
FxPCommand(FxPC_Start, 0, 0); // Start FlexiPanel service
Notes:

ERR_TXTIMEOUT: If this error is generated a serious transmission failure occurred and Toothpick has
entered an unpredictable state. For robust performance, reset if this error is received while the FlexiPanel
server is running.

Use with LMTCommand: No communication can be made using LinkMatik while the FlexiPanel server is
running except via the FlexiPanel server. No other connection should in operation, be established or device
inquiry made while the FlexiPanel server is operating. Link quality and signal strength may be enquired at any
time. Low power modes may be requested at any time (the FlexiPanel service does not invoke them itself).

FxPC_Start: Starts FlexiPanel service. Requires the pPageMode settings to be set so the device is
connectable. An LMTE_Connected event is generated when any remote device connects and
FXPE_Connect when the remote device identifies itself as a FlexiPanel client.

FxPC_SetDialog: FlexiPanel Designer permits multiple dialogs to be defined for Toothpick using the New
Dialog control property. FxXPC_SetDialog selects the dialog that is displayed. The dialog index numbers
start at zero. For convenience, DIgID_ ID numbers are defined in the header file generated by FlexiPanel
Designer. The new dialog will automatically be sent to the client if a client is connected. FxPC_SetDialog
may be called prior to FXPC_Start. If not, FXPC_Start will default to the first dialog. Returns when request
has been registered and updates the client in the next available software interrupt slot. No event is generated
to confirm the result.

FxPC_CtlUpdate: Sends the new value of a modified control to the client. The contents should be modified
beforehand using the macros defined in the header file generated by FlexiPanel Designer. If you have
several controls which you wish to appear to update simultaneously, modify all values first and then send a
FxPC_CtlUpdate for each control afterwards. If the change is simple, the client will be updated immediately.
If complete retransmission of the dialog is required because a section or password changed, the client is
updated in the next available software interrupt slot. No event is generated to confirm the result.

If FXPC_CtlUpdate is called for a section or password control, certain other controls may appear or
disappear so the entire dialog will likely be resent automatically by the FlexiPanel server.

Most of the macros defined in FlexiPanel Designer for accessing the control values are self-evident and the
worked examples sections provide examples of their use. The following example is for a list control:

// List5 control (05 - List)
#define I1D_List5_5 0x0005 // the 1D of the control
// Get_List5 5(pLong) gets List5 value. plLong must be pointer to 4-byte signed integer

// if the value could fit into a short or char, you could get fewer bytes
#define Get_List5 5(pLong) GetBytes(STR_RAM, 0x002C, pLong, sizeof(long))

Page 89 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

// plList5_5 is an unsigned long RAM pointer which may also be used to set or get the value
#define plList5_5 ((unsigned long*)0x012C)

// Set_List5_5(pRLong, pLong) sets List5 value. pRULong must be rom pointer to 4-byte signed
integer

// or pULong must be pointer to 4-byte signed integer, the other pointer must be zero

#define Set_List5 5(pRLong, pULong) SetBytes(STR_RAM, 0x002C, pRULong, pULong, sizeof(long))

// SetUp_List5_5(pRLong, pLong) sets List5 value and automatically updates client if connected
#define SetUp_List5_5(pRLong, pLong) { Set_List5 5(pRLong, pLong);
FxPCommand(FxPC_CtlUpdate, ID List5 5, 0); }
// Numltem_List5_ 5 is the number of items in the list
#define Numltem_List5 5 3

The ID will always be specified. For most controls, a Get_ function is always provided to retrieve the data, a
Set_ function to set the data value and a SetUp__ function to set the value and update the value on the client
at the same time. If the data is directly accessible as a pointer, a pointer is also provided. (Bear in mind that
you cannot set the value referenced by a ROM pointer — you need to use the Set_ macro.) Examples:

// increment list selection by Get_ and SetUp_ macros
long Ival;

Get_List5 _5(&lval);

Ival = Ival + 1;

SetUp_List5_5(&lval);

// increment list selection by pointer macros
*plList5_5 = *plList5 5 + 1;
FxPCommand(FxPC_CtlUpdate, ID_List5 5, 0);

The Matrix control value is more complex and is composed of three parts: (i) the cell values, (ii) the row value
(XY and Date-Time types only), (iii) the Matrix Row Counter. The Cell values are set using the Set_Cell
macro, etc; the row value, if appropriate, is set using the Set_Row macro, etc.

The Matrix Row Counter indicates the number of rows of data which contain meaningful values and is
accessed using the Set_RowCounter macro, etc. ltis initialized to zero. When you add data to a matrix row,
you must set the value of the Row Counter also. Do not set it to a new value until all the data in that row are
valid. You can also append data to the matrix in a first-in first-out (FIFO) fashion. To do this, set the data in
the row value indicated by the AppendRow_ macro. Then instead of modifying the Row Counter directly,
execute the NextAppendRow_ macro to move the row pointer on to the next position. When the matrix is full,
the Row Counter value becomes negative indicating to the client that all values are valid and offset in a
circular buffer fashion. Examples:

// setting the values of a labels style control
short Row, Col;

char cval;

long Ival;

for (Row = 0; Row < MaxRow_Matrix3_3; Row++)

for (Col = 0; Col < NumCol_Matrix3_3; Col++)

cval = Row + Col * 10;
Set_Matrix3_3 Cell(0, &cval, Row, Col);
}

b
Ival = MaxRow_Matrix3_3;
Set_Matrix3_3_RowCounter(0, &lval);

// appending a value to a DateTime style control

char cval = 123;

Set_Matrix4_4 Cell(0, & cval, AppendRow_Matrix4_4, 0);
Set_Matrix4_4 Row(0, &RealTimeClock, AppendRow_Matrix4_4);
NextAppendRow_Matrix4 4;

FxPCommand(FxPC_CtlUpdate, ID_Matrix4_4);

FXPC_PartUpdate: Sends a single row of matrix data to the client. The row data should be modified
beforehand using the macros defined in the header file generated by FlexiPanel Designer. Part updates are
only possible from version 3 of the FlexiPanel Protocol. If the client device is version 2, a full update will

Page 90 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

automatically be sent instead. The following example shows FxPC_PartUpdate used for data logging to a
matrix.

// Lowlnterrupt handler
void Lowlnterrupt (void)

it (IsSWI(SWI_Tick))
ClearSWI(SWI_Tick); // Clear interrupt flag

// log point in date time matrix every 60 secs IF FlexiPanel data has been initialized
if (IsFxPInitialized && RealTimeClock.sec == 0)

{

unsigned short RowToUpdate;

char Newval = {new data value};

RowToUpdate = AppendRow_Time_Matrix4_4;

Set_Matrix4_4 Cell(0, &Newval, AppendRow_Matrix4_ 4, 0);
Set_Matrix4_4 Row(0, &RealTimeClock, AppendRow_Matrix4_4);
NextAppendRow_Matrix4_4;

FxPCommand(FxPC_PartUpdate, ID_Matrix4_4, (void *) RowToUpdate);

}

return;

}
}

FxPC_SetProps: Modifies the appearance of the control on the client. It's easiest to use the macros Hide_,
Show_, Enable_, Disable_and SetCol _ created by FlexiPanel Designer in order to use these commands.
Note that this only changes the properties on the client. The initial values transmitted to a client when it
connects are the fixed initial values specified in FlexiPanel Designer.

FxPC_Disco: Disconnects currently connected remote client. LMTOK event generated when command is
complete.

FXPC_Finish: Ends FlexiPanel service and exits slave mode. If a remote client is connected, it is
disconnected gracefully first. LMTOK event generated when command is complete.

FxPC_UpdateRow: Sends a message to the client with a single row of updated data.

FXPC_InitData: Sets all control values to their initialization values. FxPC_Start will automatically
initialize the data if you have not previously called FXPC_InitData. You only need to call it if you need the
data to be initialized long before you call FXPC_Start or if you wish to return all controls back to their
initialization values. Once FxXPC_InitData has been called, the semaphore IsFxPInitialized will return
true.

FxXPC_MultiUpdate: Allows multiple control updates to be sent to the client in a single message. This
ensures they all appear to update at the same time. It is also more efficient in terms of bytes transmitted. The
IDVval parameter of the FxPC_MultiUpdate command indicates how many of the following
FxPC_CtlUpdate commands should be grouped together as a single message. The FxPC_CtlUpdate
commands must follow immediately because low priority interrupts will be disabled until all FxPC_CtlUpdate
commands have been sent; they must refer to controls that are currently being displayed, i.e. in the current
dialog and not hidden by a closed section or password. A multiple update must only be started if a remote
client is already connected; if it disconnectes, the updated should be aborted.

FxPC_MultiPartUpdate: Allows multiple control partial updates to be sent to the client in a single
message. This ensures they all appear to update at the same time. It is also more efficient in terms of bytes
transmitted. The IDVal parameter of the FXPC_MultiPartUpdate command indicates how many of the
following FxPC_PartUpdate commands should be grouped together as a single message. The
FxPC_PartUpdate commands must follow immediately because low priority interrupts will be disabled until
all FxPC_PartUpdate commands have been sent; they must refer to controls that are currently being
displayed, i.e. in the current dialog and not hidden by a closed section or password. An example of the
FxPC_MultiUpdate command, which is used in the same way, is given in the DARC-II module source code.

Page 91 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

A multiple update must only be started if a remote client is already connected; if it disconnectes, the updated
should be aborted.

FxPC_MultiPropsUpdate: Allows multiple control partial updates to be sent to the client in a single
message. This ensures they all appear to update at the same time. It is also more efficient in terms of bytes
transmitted. The IDVal parameter of the FXPC_MultiPropsUpdate command indicates how many of the
following FxPC_SetProps commands should be grouped together as a single message. The
FXPC_SetProps commands must follow immediately because low priority interrupts will be disabled until all
FxPC_SetProps commands have been sent; they must refer to controls that are currently being displayed,
i.e. in the current dialog and not hidden by a closed section or password. An example of the
FxPC_MultiUpdate command, which is used in the same way, is given in the DARC-II module source code.
A multiple update must only be started if a remote client is already connected; if it disconnectes, the updated
should be aborted.

FxPEvent
The callback FxPEvent is called when an event happens on the LinkMatik module:
void FxPEvent(unsigned char EventlD, char *pData)

ResponselD identifies the event that happens.
nature of the event:

pData may contain related information depending on the

EventID (hex value) Event description *pData

FXPE_Connect (01)

FlexiPanel client connected

null pointer

FXPE_Ack (03)

FlexiPanel acknowledge
message

null pointer

FXPE_ClIntUpdate (04)

Client updated a control

Control ID (unsigned long)

FxPE_Disco (02)

FlexiPanel client
disconnected

OXFF if willful disconnection by client
0x00 if Bluetooth connection lost
(unsigned char) — see note below

FXPE_PingReply (05)

Ping reply received

nul l pointer

FXPE_PingFail (06)

Ping failed

null pointer — see note below

FXPE_MsgResp (07)

Response from message box

Response value (unsigned char)

FXPE_NewDialog (08)

A new dialog has just been
displayed

Zero-based index of dialog displayed
(unsigned char by value)

void FxPEvent(unsigned char EventlD, void *pData)

// Do client connected stuff

// Ensure 1 am in a safe mode
EnterFailSafeMode();

Example:
{
// connection
if (EventlD == FxP_Connect)
3
// disconnection
if (EventID == FxP_Disco)
{
b
3
Notes:

For forward compatibility, ignore any undocumented FXPE_ events rather than generating an error.

This

allows us to add new events in future without upsetting existing firmware.

Page 92 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

FxPEvent may be called from the low priority interrupt, so you should save any other static variables (other
than WREG, STATUS, BSR, PROD, MATH_DATA) used by the functions called by FxPEvent.

FXPE_Connect: Event is generated after connecting device has been verified as a FlexiPanel compatible
device but before any messages are sent to it.

FXPE_Ack: Event is generated if remote device acknowledges messages sent by Toothpick. Acknowledge
messages are only generated if the MTF_AckPlease server flag is set. This flag is specified as the option
Request Acknowledge in FlexiPanel Designer.

FXPE_Disco: Event is generated after a verified FlexiPanel compatible device is electing to disconnect. If
the disconnect is at Toothpick’s request (through the FXPC_Finish command), this message will not be
received. In either case, a LMTE_Disconnect event will be generated and then LinkMatik is placed into
slave mode again ready for another FlexiPanel device to connect.

FXPE_Disco / FxPE_PingFail: If the Bluetooth connection is lost due to the remote device powering
down or going out of range, the FXPE_Disco event usually occurs with *pData result code 0x00. However,
it is possible that a FXPE_PingFail may occur instead; for example if the FlexiPanel client software closes
(or hangs) but the underlying Bluetooth connection still exists or hasn't finished closing. In either case,
Toothpick should enter a failsafe mode immediately if operating machinery, etc.

FXPE_PingReply: Pings provide a failsafe method of ensuring that the FlexiPanel server, the Bluetooth
connection and the remote client are all functioning correctly. If this feature selected in the FlexiPanel server
settings in FlexiPanel Designer, the server will send a ‘ping’ message to the client every few seconds. If the
client replies, a FXPE_PingReply event is generated and confirming all is functioning correctly. If no reply is
received by the time the next ‘ping’ is due to be sent, a FXPE_PingFail is generated. Most malfunctions
would generate a FXPE_PingFail within a few seconds; a hardware or software malfunction in the RTC
clock loop would result in neither FXPE_PingReply or FXPE_PingFail events being generated.

FXPE_ClIntUpdate: Event is generated for each control that FlexiPanel client updates, each time it is
updated. For button and image controls, this message indicates that the button has been pressed.

FXPE_MsgResp: Event is generated if the user pressed a button on a message box. The data value is the 1-
based index of the button pressed. For example, if the message box is of Yes/No/Cancel style, the data value
is 1 for Yes, 2 for No and 3 for Cancel.

FXPE_NewDialog: Generated after a new dialog has just been sent to the client. The main use for this
message is to follow up the new dialog information with specific control properties information, such as control
visibility. See the HappyTerminal Firmware Solution for an example of its use.

Get_CtINm(pData) macro

The macro Get_CtINm(unsigned char * pData), where CtINm represents a control name, is defined
for each relevant control in the header file generated by FlexiPanel Designer. It retrieves the value of the
control and stores it at pData. Refer to the header file comments immediately preceding the macro definition
for notes on usage, particularly regarding buffer size requirements.

SetUp_CtINm(pRData, pData) macro

The macro SetUp CtINm(rom unsigned char * pData , unsigned char * pData), where
CtINm represents a control name, is defined for each relevant control in the header file generated by
FlexiPanel Designer. It sets the value of the control to the value pointed to by pRData or pData (whichever is
non zero). It then executes a FXPE_CIntUpdate command to update the client with the new value. Refer to
the header file comments immediately preceding the macro definition for notes on usage.

Page 93 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Set_CtINm(pRData, pData) macro

The macro SetUp_CtINm(rom unsigned char * pData, unsigned char * pData), where
CtINm represents a control name, is defined for each relevant control in the header file generated by
FlexiPanel Designer. It sets the value of the control to the value pointed to by pRData or pData (whichever is
non zero). However, it does not send a message to update the client with the value. You would only use this
in preference to SetUp_ CtINm if you wished changes on several controls to appear to be simultaneous.
Since the FXPE_CIntUpdate command is not called, you must call it in quick succession for each control,
once all the control values have been modified. Refer to the header file comments immediately preceding the
macro definition for notes on usage.

pDevD, pDIgD and pCtID macros

The file Toothpick.h provides three data structures as alternative ways to access the information in the
FlexiPanel User Interface memory section. These are:

¢ One bgFxPData data structure relating to the FlexiPanel Server overall.
e One bgFxPDIgData data structure for each dialog in the user interface.
¢ One bgFxPCtlData data structure for each control in the user interface.

The file Toothpick.h explains the contents of the data structures in more detail. The pDevD, pDIgD and
pCtlD macros provide pointers to these data structures as follows:

e pDevD is a pointer to the bgFxPData data structure.
e pDIgD is a pointer to the array of bgFxPDlgData data structures, one for each dialog.
e pCtlD is a pointer to the array of bgFxPCtlData data structures, one for each control.

Initialization

Upon reset, Toothpick performs a few initialization functions and then passes control to the address
0x00C000. Assuming Toothpick210.lkr and cO18itp.o are used as supplied, cO18itp.o then
initializes RAM data and then calls main(). If main returns to cO18itp.o, itis called again in an infinite loop.
The source code c018itp.c is provided in the software development kit and differs from c018itp.c
provided with the C18 compiler only in that _entry_scn is relocated to 0x00CO0OO.

Toothpick performs the following initialization functions:

Initializes the software stack.

Sets LEDs as outputs, off.

Sets interrupt system to prioritized interrupts.

Enables high and low priority interrupts.

A/D converter is turned off and inputs are set to digital.

Comparators are turned off.

Timer 2 is configured as a low priority interrupt triggered by software flags.

Sets pushbutton as input creating high priority interrupt on button down

Toothpick software version number is written to pvVersionStr.

If initialization was due to a power-on reset, the Real TimeClock value is set to the value RESETTIME

specified in the Toothpick settings. Similarly the DSTEvent variable is set to the value DSTDEFAULT.

o |[f the ToothpickSettings flag BQS_RealTimeClock is set, the real time clock is started. (This is the
last instruction executed before passing control to cO18itp.c.)

¢ LinkMatik presence is determined.

If LinkMatik is attached, the following steps occur:

e LinkMatik module is reset.

Page 94 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Serial service, master/slave switch, sniff mode and hold mode are enabled on LinkMatik.
UART1 initialized for communication with LinkMatik at 115.2kbps.

LinkMatik send and receive buffers initialized.

If the pushbutton is down Toothpick enters wireless field programming mode.

The local LinkMatik Bluetooth address is written to RAM location pLocal BTAddr.

e LinkMatik device name is set to the value stored at ROM location pLocalName.

o Serial port service is registered in LinkMatik Service Discovery Database.

Note that the clock time is not changed if initialization is due to a software reset, so the module can use the
software reset to return to a known state without the real time clock being re-initialized.

If the button was pressed at power-up, Toothpick will enter wireless field programming mode. If not, control
then passes to c018itp.c, which initializes C static variables and reinitializes the stack. Finally,
c018itp.c passes control to the developer function main().

Interrupts
Interrupt Management

High and low priority interrupts are provided on the PIC18LF6722 / 6722 / 67J10. In Toothpick, the high
priority interrupt is preserved for urgent, extremely quick tasks such as taking a byte received from a UART
and placing it in a buffer. This must be done quickly because another byte may be received soon after. You
should do nothing in a high priority interrupt which takes much time because other high priority interrupts will
have to wait until your task is complete. The LinkMatik UART (USART1) operates at 115kBaud and so no
high priority task should task more than around 80us (400 instruction cycles).

Low priority interrupts are for tasks which must be completed before the main program can continue. They
may take as long as they like, however, because a high priority interrupt event will still be handled immediately.

CAUTION: MPLAB permits low priority interrupt processing to be ‘nested’ by clearing the GIEF interrupt flag
or by using the macro EnableLowlnts from within an interrupt. However, this is not permitted with
Toothpick Services as the interrupts generated by Toothpick services are not expecting it. Therefore, to
protect critical code from being interrupted, you should only re-enable low priority interrupts if they were
previously enabled, e.g.

unsigned char LIS = LowIntState;
DisableLowlnts;

-—- your critical code ---

it (LIS) EnableLowlnts;
Interrupt Handlers
You must provide the following two interrupt handling functions:

void Lowlnterrupt(void)

void Highlnterrupt(void)
They will be called if an interrupt occurs which does not concern the Toothpick operating system.
The following registers will be saved while servicing a high priority interrupt: WREG, STATUS, BSR.

ErrorStatus may be called from the High Priority interrupt. The effect of returning from a call to
ErrorStatus may be unpredictable if ErrorStatus or any of the functions it calls uses static variables.

Page 95 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

The following registers will be saved while servicing a low priority interrupt: WREG, STATUS, BSR, PROD,
MATH_DATA, .tmp_data, TBLPTR, TABLAT. The size of .tmp_data is fixed at Toothpick Services compile time
and is set to 20 bytes. If the compiler requires more .tmp_data space it is usually due to complicated
expressions. These can be broken down to a series of smaller ones.

LMTEvent and FxPEvent may be called from the Low Priority interrupt, so you should save any other static
variables used by the functions calls by LMTEvent and FxPEvent.

Software Interrupts

If you have a long task which requires a high priority interrupt for some reason, you can use a software
interrupt to trigger a low priority interrupt upon completion of the high priority interrupt. For example, the
LinkMatik UART interrupt handler quickly stores each received byte in a buffer. Then it decides whether the
received byte is the last byte of an AT message from LinkMatik. If it is, a software interrupt is used to trigger a
low priority interrupt which then interprets the command. The command can then be interpreted at leisure and
high priority interrupt events will still be handled immediately.

The PIC18LF6722 / 6722 / 67J10 instruction set does not provide a software interrupt instruction, so Timer 2
is configured to generate an immediate low priority interrupt. The public data byte SWIFflags is used to
record which event generated the interrupt. The bit flags are:

bit value | SWI_Flag bit field Function

0x01 SW1_ATResponse Internal use — responding to LinkMatik message
0x02 SWI1_FxPData Internal use — responding to FlexiPanel message
0x04 SWI_LMTData LinkMatik data received

0x08 SWI_RefreshDialog | Resends dialog info to client

0x10 SWI_Tick Called once a second by the real time clock
0x20 SWI_SwiI3 Free for developer use

0x40 SWI_SwWI2 Free for developer use

0x80 SWI_Swi1 Free for developer use

The FlexiPanel server uses SWI_RestartSlave and SWI_RefreshDialog but the developer is also free to
do so.

The SWI_Tick interrupt may miss beats if other low priority interrupts take longer than a second to process.
The Real TimeClock clock values will, however, remain correct since these are incremented in a high priority
interrupt by the Toothpick Services.

The following variables and macros are defined in Toothpick.h and/or Toothpick210.c:

Definition Function
SWiflags Bit fields indicate cause of interrupt
SWIInit Initializes Timer 2 for software interrupt this is called for you

before main() is called

SetSwi(SWI_Flag) Triggers software interrupt SWI_Flag

IsSWI(IntFlag) True if software interrupt SWI_Flag was triggered
ClearSWI(SWI_Flag) | Clears interrupt SWI_Flag.

Examples:
SetSWI(SWI_SWI1); // interrupt SWI_SWI1 will occur ASAP

// low priority interrupt handler
void Lowlnterrupt (void)

if (IsSWI(SWI_LMTData))
{

Page 96 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

ClearsSwWil(SWI_LMTData);

// Clear interrupt flag

// process new data;

// can return now - if other interrupt flags are set,
// Lowinterrupt will be called again

return;

Hardware Interrupts

Pins INTO and INT1 of the PIC18LF6722 / 6722 / 67J10 may be configured to generate hardware interrupts —

consult Microchip Technology documentation for more details.

Note that using the INTO and INT1 pins as interrupts is difficult if in circuit debugging is used, since these pins
are also connected to the debug pins RB6 and RB7. If necessary, you can set the comparators to generate
interrupts if AN11 or AN9 change state using the SetCmpsIntOnChange(iPriority) macro.
section on comparators for details.)

The following macros are defined for processing hardware interrupts:

SetPrioritizedints Set high and low priority interrupts (default)
EnableHighlnts Enable high priority interrupts
EnableLowlnts Enable low priority interrupts (see caution above)
DisableHighlInts Disable high priority interrupts
DisableLowlnts Disable low priority interrupts
LowIntState Non-zero if low priority interrupts enabled
IntRBO Non-zero if RBO edge interrupt flag raised
IntRB1 Non-zero if RB1 edge interrupt flag raised
IntRB2 Non-zero if RB2 edge interrupt flag raised
INntRB3 Non-zero if RB3 edge interrupt flag raised
INntRB4toRB7 Non-zero if IntRB4toRB7 interrupt on change flag raised
IntTimerO Non-zero if TimerQ interrupt flag raised
IntTimerl Non-zero if Timer1 interrupt flag raised
IntTimer2 Non-zero if Timer2 interrupt flag raised
IntTimer3 Non-zero if Timer3 interrupt flag raised
IntTimer4 Non-zero if Timer4 interrupt flag raised
IntCCP1 Non-zero if CCP1 interrupt flag raised
IntCCP2 Non-zero if CCP2 interrupt flag raised
IntCCP3 Non-zero if CCP3 interrupt flag raised
IntCCP4 Non-zero if CCP4 interrupt flag raised
IntCCP5 Non-zero if CCP5 interrupt flag raised
IntPSP Non-zero if PSP interrupt flag raised
IntA2D Non-zero if A to D interrupt flag raised
INntSSP Non-zero if MSSP interrupt flag raised
IntComparator Non-zero if comparator interrupt flag raised
IntEE Non-zero if EEPROM interrupt flag raised
IntBusCrash Non-zero if 12C bus collision interrupt flag raised
IntLowVolt Non-zero if LVD interrupt flag raised
IntRxD1 Non-zero if UART1 RxD interrupt flag raised
IntTxD1 Non-zero if UART1 TxD interrupt flag raised
INtRxD2 Non-zero if UART2 RxD interrupt flag raised
INntTxD2 Non-zero if UART2 TxD interrupt flag raised

Page 97 15-Apr-07 Toothpick 2.1/r2.1.0

DS484-2 © FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

I2C Synchronous Serial 1/0

The 12C Synchronous Serial I/O is available for developer use on the SDA and SCL pins. The Hardware
Peripheral Library provided with C18 provides 12C functions.

Low Voltage Detect

The PIC18LF6722 / 6722 / 67J10's Low Voltage Detect is available for developer use on the AN4 pin.
Developers will need to consult PIC18LF6722 / 6722 / 67J10 documentation to use this feature.

Memory Managment
Overview

Toothpick provides functions for reading and writing data to RAM, ROM, EE and External memory. A storage
type flag specifies which type of memory is to be written to or read.

GetBytes

The service GetBytes retrieves nBytes bytes of data from memory mStr at address Addr and places them
in the buffer pData:

void GetBytes(unsigned char mStr, unsigned short nBytes, void *pData,
unsigned short Addr)

SetBytes

The service SetBytes sets nBytes bytes of data in memory mStr at address Addr to the values specified
by buffer pRData if it is non-zero, or pData otherwise:

void SetBytes(unsigned char mStr, unsigned short nBytes, rom void *pDataR,
void *pData, unsignhed short Addr)

SetBytes reads existing non-volatile memory before writing and does not re-write it if it is already correct.
This extends memory life. SetBytes will verify non-volatile memory after writing. If the verify fails, the
SetBytes will retry a total of 100 times. If it still fails, it calls ErrorStatus() with error
ERR_MEMORYFAILURE.

Storage type flag mStr
#define value

STR_ROM 0x01 | Treated as STR_ROMO1 (exists mainly for 0x0000 — OXFFFF
backward compatibility)
STR_RAM 0x02 | Internal RAM locations 0x0100 to OX9FF 0x0000 — OxO8FF

STR_EE 0x03 | Internal EE locations 0x0000 to OXO3FF 0x0000 — OxO3FF
STR_EXTO 0x10 | External memory I2C address 0xBO / 0xB1 | 0x0000 — IC limit
STR_EXT1 O0x11 | External memory I12C address OxB2 / 0xB3 | 0x0000 — IC limit
STR_EXT2 0x12 | External memory I12C address OxB4 / 0xB5 | 0x0000 — IC limit
STR_EXT3 0x13 | External memory 12C address OxB6 / 0xB7 | 0x0000 — IC limit
STR_EXT4 0x14 | External memory 12C address OxB8 /0xB9 | 0x0000 — IC limit
STR_EXT5 0x15 | External memory I2C address OXBA / OXxBB | 0x0000 — IC limit
STR_EXT6 0x16 | External memory I12C address OxXBC / OxBD | 0x0000 — IC limit
STR_EXT7 0x17 | External memory 12C address OXBE / OXBF | 0x0000 — IC limit

Memory type Addr address range

STR_ROMOO 0x80 Internal Flash locations 0x00C000 to 0xC000 — OxXFFFF
OXO0FFFF
STR_ROMO1 0x81 Internal Flash locations 0x010000 to 0x0000 — OxFFFF

Page 98 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Storage type flag mStr
#define value

Memory type Addr address range

OxO01FFFF

Notes:

STR_RAM: Internal RAM locations 0x0100 to Ox9FF are mapped to the Addr values 0x000 to Ox8FF. The
FlexiPanel server allocates for itself as much of this memory as it requires for user interface variable storage
starting at RAM location 0x0100 (i.e. Addr = 0x0000). The developer may read from and write to the
remaining locations as desired, provided the memory is protected so that the linker does not assign the
desired memory locations. To tell the linker you wish to reserve a section of RAM for your own use, create a
protected DATABANK section in the linker script Toothpick210. Ikr.

Other RAM locations are not accessible using the memory manager.

STR_ROM: Internal ROM locations 0x000000 to OXOOBFFF are not accessible to prevent overwriting of the
Toothpick OS. A write may take a few milliseconds as described in Microchip Technology’s documentation.
During this time, interrupts are turned off and communication with LinkMatik is automatically suspended. Any
other services which require a fast response (such as asynchronous serial 1/O) should be suspended during a
write operation to ROM. Internal ROM is rewriteable approximately 100,000 times Toothpick and 1000 times
on Toothpick Lite . However, bear in mind that in each call to SetBytes an entire 64-byte block of memory is
erased and re-written. For maximum lifetime, send an entire array of data rather than calling the function
repeatedly for each byte of data in an array.

STR_EE: Internal EEPROM locations 0x0000 to OxXO3FF are rewriteable approximately 1 million times. (No
EEPROM memory is implemented on Toothpick Lite.)

STR_EXTx: Up to eight external 12C memory devices may be placed on the I12C lines and accessed
automatically using the SetBytes and GetBytes functions. External memory access has been tested with
Microchip Technology 24Cxxx series EEPROM devices and external 12C memory devices should use the
same 12C communications format. Setting up external 12C memory is as follows, with reference to the figure:

— Vdd
! |
4k7 4k7 o
| |
P! :
ToothPIC 12C memory | | 1!
|
AO 1
ol
SDA SDA Al
| |
scL scL A2 [
| |
P! :
LTO other 12C L
devices v
|
: Vss

1. Connect the Vdd, Vss , SDA and SCL lines for all memory devices.
2. Provide 4K7 pullup resistors for SDA and SCL.

3. Hardwire each 12C memory device address line A0-A2 to Vcc or Vss to specify separate storage
addresses as in the following table.

Storage address A2 Al A0
STR_EXTO Vss Vss Vss
STR_EXT1 Vss Vss vdd
STR_EXT2 Vss vdd Vss
STR_EXT3 Vss vdd vdd

Page 99 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

STR_EXT4 vdd Vss Vss
STR_EXT5 vdd Vss Vdd
STR_EXT6 vdd Vdd Vss
STR_EXT7 vdd vdd vdd

4. Add the 12C memory initialization code 12CMemInit100kHz or 12CMemInit400kHz to your
initialization code. 12CMemInit400kHz is faster but limited to devices which can operate at this

speed.

5. Call GetBytes and SetBytes as required.

During calls to GetBytes and SetBytes for 12C memory, interrupts are turned off and communication with
LinkMatik is automatically suspended, just in case FlexiPanel server processing requires access to external
memory. Other 12C 1/0 would require similar suspension of interrupts and LinkMatik communication.

If a recoverable attempt is made to read or write nonexistent I2C memory, the ErrorStatus() callback will
be called with error value ERR_MEMORYFAILURE. (If SDA or SCL are incorrectly configured or lack pullup
resistors, GetBytes and SetBytes may never return or call ErrorStatus.)

Memory Map and Linker Scripts

The linker script Toothpick210. Ikr tells the linker how to allocate ROM and RAM memory. The RAM
memory is arranged as follows:

RAM location Function

0x00 to 0x13 MATH_DATA section used by C18 math libraries
0x14 to Ox1E _LowlInterrupt_tmp section used by C18
0x20 to 0x31 _Hilnterrupt_tmp section used by C18
0x32 to 0x45 .tmpdata section used by C18

0x46 to OxOFF Developer use

0x100 to Oxyyy

FlexiPanel User Interface (to Oxyyy, as required)

Oxyyy+1l to OxABF

For developer use

OXACO to OxAFF LinkMatik receive source channel buffer

OxBOO to OxBFF LinkMatik receive buffer

OxCOO0 to OxCFF Toothpick internal use

OxDOO to OxEF3 C stack

OXEF4 to OxEFF dbgspr debug variables if MPLAB in circuit debugger used,
otherwise for developer use

OxF60 to OxFFF Access RAM for developer use

Please note that the .tmpdata section cannot be increased because the high interrupt handler would not be
able to cache the data fast enough to process UART interrupts from LinkMatik. If you get linker errors saying
that . tmpdata is too small, break up long expressions into smaller units.

The Flash ROM memory is arranged as follows:

ROM Location Function

0x00000 to Ox0007F Toothpick vectors

0x00080 to OxOBFFF Toothpick OS

0x0CO00 to OxOCO7F Toothpick callback vectors

0x0C080 to OxOD7FF Toothpick settings any spare space is free for
developer code

0x0D800 to OxOFFFF Developer code

0x10000 to Oxlzzzz FlexiPanel User Interface (zzzz bytes, as required)

Ox1zzzz+1 to 0x1FDCO Developer code

Ox1FDCO to Ox1FFFF MPLAB debug code if used (otherwise for developer

Page 100 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

ROM Location Function
code)

The FlexiPanel User Interface RAM and ROM sections are as large as required and the remaining space
above them will be automatically allocated by the linker for developer use. The amount of RAM and ROM
used is indicated in the _h file generated by FlexiPanel Designer, e.g.:

DARCIIDefaultRes.c
Toothpick User Interface data file generated by FlexiPanel Designer
Created at 17:46:56 on 3/22/05

ROM allocation: 0x010000 to 0x0101Dé6
RAM allocation: 0x0100 to 0x0101

B T REEEE

T N N N
N Y

The file Toothpick.h defines in more detail the arrangement of information in the FlexiPanel User Interface
section. It comprises:

¢ One bgFxPData data structure relating to the FlexiPanel Server overall.
e One bgFxPDIgData data structure for each dialog in the user interface.
¢ One bgFxPCtlData data structure for each control in the user interface.

The file Toothpick.h explains the contents of the data structures in more detail.

The linker script will ensure that the linker automatically places the developer code as specified. It is good
practice to compile it into small sections to ensure the linker can fit it in around the fixed memory allocation.

Memory Model

Toothpick Services assume the following C18 compiler memory model settings:
e Large code model (>64Kbytes)
e Large data model (all RAM banks)
e Multi-bank stack model

Power Saving Modes

Oscillator Control

The configuration bits are set to HS and Oscillator Switch Enable is on. To switch clock speeds, use
the following definitions:

0sc32kHzInit Initializes 32kHz oscillator
SetSpeed5MIPs Switches to high speed (5MIPs / 20MHz)
SetSpeed81921Ps Switches to low speed (8192IPs)
1s81921Ps True if in low speed mode
Examples:
0Osc32kHzInit;
SetSpeed81921Ps; // Enter low speed mode

if (~1s81921Ps) msDelay(1) ; // 1T high speed, wait 1ms

Page 101 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

LinkMatik Sleep Mode

The LinkMatik sleep low power modes are accessed using LMTC commands. For absolutely the lowest
power mode, set pPageMode so LinkMatik is not connected, connectable or discoverable:

To turn off discoverability and connectability and then sleep:

LMTCommand(LMTC_Generic, 0, (rom void *) "SET BT PAGEMODE O 2000 1");
LMTCommand(LMTC_Sleep, 0, (rom void *) "SET BT PAGEMODE 0O 2000 1");

To wake and to resume discoverability and connectability:

LMTCommand(LMTC_Generic, 0, (rom void *) "3 2000 1");

LinkMatik Sniff mode
Sniff mode is a power saving mode for the LinkMatik module while a connection is present. It is essentially an
agreement that communication can only resume in specific time slots. Once in sniff mode, a connection

remains in sniff mode until either party decides to exit. Three time-period parameters, Tinterval, Tattempt and
Ttimeout, govern the sniff mode behavior as follows:

e Time is divided into sniff intervals of length Tinterval.

e Communication may only resume in the first Tattempt time units of the sniff interval.

¢ If communication does resume, it may continue right up to the end of the sniff interval. However, if
resumed communication ceases at any time for longer than Ttimeout time units, communication must

stay ceased until the start of the next sniff interval.

To enter or exit sniff mode, use the LMTC_SetLink command. Once set up, sniff mode is transparent to the
developer.

Park mode

Park mode is a power saving mode for the LinkMatik module while a connection is present. In the park mode,
a device is still synchronized to the piconet but does not participate in the traffic. Parked devices occasionally
listen to the traffic of the master to re-synchronize and check on broadcast messages. It has a lower duty
cycle than sniff mode but has to exit the mode in order to communicate.

To enter or exit park mode, use the LMTC_SetLink command. Once set up, park mode is transparent to the
developer.

Pushbutton and LED functions

To control and read the LEDs and the pushbutton, use the following definitions:

InitPBandLEDs Initializes LEDs to off outputs and pushbutton to input
LedGreen Green LED state

LedGreenOn Green LED on

LedGreenOff Green LED off

LedGreen Red LED state

LedGreenOn Red LED on

LedGreenOff Red LED off

Page 102 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

PushButton Pushbutton state
PushButtonOn Nonzero if Pushbutton pressed, zero otherwise
PushButtonOff Zero if Pushbutton pressed, nonzero otherwise

Pulse Width Modulation

The PIC18LF6722 / 6722 / 67J10’'s PWM outputs are available for developer use on the CCP pins. The
Hardware Peripheral Library provided with C18 provides PWM functions.

Real Time Clock

If BQS_RealTimeClock is set in the ToothpickSettings flags, timer 1 is initialized for use as a real time
clock. The developer may override this setting by clearing this flag. This will have the following effects:

e The real time clock will not advance.
¢ Pings will not be sent to FlexiPanel clients.
e The software interrupt SWI_Tick will never be generated by the real time clock.

The current time is stored in the DateTimeU structure (see the section Date-Time Values) named
RealTimeClock. The timer 1 counts at a rate of 32768Hz and then generates a high interrupt every second.
During the high interrupt, the Toothpick OS updates the RealTimeClock structure and then generates a
SWI_Tick software interrupt which the developer should clear. The following variables and macros are
defined:

Name Description

RealTimeClock.sec Second (0-59)

RealTimeClock.min Minute (0-59)

RealTimeClock.hour Hour (0-23)

RealTimeClock.date | Date (1-31)

RealTimeClock.dow Bits 0-2: Day of week (0 — 6 Sunday to Saturday respectively; 7 =
Unknown)

RealTimeClock.month | Month (1-12)

RealTimeClock.year | Year (0-65536)

SuspendT1lint Disables timer interrupt; call immediately prior to modifying
RealTimeClock values.
ResumeTlInt Enables timer interrupt; call immediately after modifying

Real TimeClock values.

SetSecFracs(sF)

Sets the fractions of a second to the unsigned short value sF (0-32767)

GetSecFracs(sF)

Writes the fractions of a second to the unsigned short sF (0-32767)

ClearSecFracs

Sets the fractions of a second to zero

In FlexiPanel Designer, one Date-Time control can be tied to the real time clock. If it is, Toothpick will:

e Automatically update the control value every second.

o |[fthe ToothpickSettings flag BQS_ClientTick is set, automatically update the client with the
new control value every second.

e Automatically update the real time clock time if the user changes the control’s time.

The BQS_ClientTick flag may be cleared if the developer wishes to arrange to update the client less
frequently.

A utility exists in Toothpick.h to automatically calculate the day of the week given the date, month and year.
This is detailed in the Utility Services section.

Page 103 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Daylight Savings Time adjustments are implemented. Daylight Savings Time rules vary from region to region.
The variable DSTEvent defines an event which the Real Time Clock will check for each hour. If the event
occurs, the clock is changed and the DSTEvent event is exchanged for its seasonal converse: (Bit 6 is set for
Summer and clear for Winter.) On power-up DSTEvent is initialized to DSTDEFAULT as defined in
Toothpick.h. It can thereafter be modified at will.

The DSTEvent Daylight Savings Time events are defined in the following table. Please note that Daylight
Savings Time data for some countries may become out of date as laws change. We rely on customer
feedback to keep this information up to date. Countries in the tropics do not implement Daylight Savings Time.
If a specific day of the week is specified, the event is triggered on the first corresponding day on or after the
date specified. We have put considerable effort into compiling this data and we disclose it for customer
reference only. It remains our copyright and its reproduction or use without our prior consent is not permitted.

DSTEvent | #defined as... Month Date | Day of Hour | Action taken
Value week

0 DST_NONE n/a n/a n/a n/a None

1 DST_AUSTRALIA 10 25 Sunday 0 Hour advanced 1
33 DST_AUSTRALIA_SUMMER 3 25 Sunday 1 Hour retarded by 1
2 DST_BAHAMAS 4 1 Sunday 0 Hour advanced 1
34 DST_BAHAMAS_SUMMER 10 25 Sunday 1 Hour retarded by 1
3 DST_BRAZIL 11 1 Sunday 0 Hour advanced 1
35 DST_BRAZIL_SUMMER 2 15 Sunday 1 Hour retarded by 1
4 DST_CANADA 4 1 Sunday 0 Hour advanced 1
36 DST_CANADA_SUMMER 10 25 Sunday 1 Hour retarded by 1
5 DST_CHILE 10 8 Saturday | 0 Hour advanced 1
37 DST_CHILE_SUMMER 3 8 Saturday | 1 Hour retarded by 1
6 DST_CUBA 4 1 Any 0 Hour advanced 1
38 DST_CUBA_SUMMER 10 25 Sunday 1 Hour retarded by 1
7 DST_E_EUROPE 3 25 Sunday 0 Hour advanced 1
39 DST_E_EUROPE_SUMMER 10 25 Sunday 1 Hour retarded by 1
8 DST_EGYPT 4 24 Friday 0 Hour advanced 1
40 DST_EGYPT_SUMMER 9 24 Thursday | 1 Hour retarded by 1
9 DST_FALKLANDS 9 8 Sunday 0 Hour advanced 1
41 DST_FALKLANDS_SUMMER 4 6 Sunday 1 Hour retarded by 1
10 DST_GREENLAND 3 25 Sunday 1 Hour advanced 1
42 DST_GREENLAND_SUMMER 10 25 Sunday 2 Hour retarded by 1
11 DST_IRAN 1 1 Any 0 Hour advanced 1
43 DST_IRAN_SUMMER 7 1 Any 1 Hour retarded by 1
12 DST_IRAQ 4 1 Any 0 Hour advanced 1
44 DST_IRAQ_SUMMER 10 1 Any 1 Hour retarded by 1
13 DST_ISRAEL 4 1 Friday 0 Hour advanced 1
45 DST_ISRAEL_SUMMER 9 1 Friday 1 Hour retarded by 1
14 DST_KIRGISTAN 3 25 Sunday 0 Hour advanced 1
46 DST_KIRGISTAN_SUMMER 10 25 Sunday 1 Hour retarded by 1
15 DST_LEBANON 3 25 Sunday 0 Hour advanced 1
47 DST_LEBANON_SUMMER 10 25 Sunday 1 Hour retarded by 1
16 DST_MEXICO 4 1 Sunday 0 Hour advanced 1
48 DST_MEXICO_SUMMER 10 25 Sunday 1 Hour retarded by 1
17 DST_NAMIBIA 9 1 Sunday 0 Hour advanced 1
49 DST_NAMIBIA_SUMMER 4 1 Sunday 1 Hour retarded by 1
18 DST_NEWZEALAND 10 1 Sunday 0 Hour advanced 1
50 DST_NEWZEALAND_ SUMMER | 3 15 Sunday 1 Hour retarded by 1
19 DST_PALESTINE 4 15 Friday 0 Hour advanced 1
51 DST_PALESTINE_SUMMER 10 15 Friday 1 Hour retarded by 1
20 DST_PARAGUAY 9 1 Sunday 0 Hour advanced 1
52 DST_PARAGUAY_SUMMER 4 1 Sunday 1 Hour retarded by 1
21 DST_RUSSIA 3 25 Sunday 2 Hour advanced 2

Page 104 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

DSTEvent | #defined as... Month | Date | Day of Hour | Action taken
Value week

53 DST_RUSSIA_SUMMER 10 25 Sunday 4 Hour retarded by 2
22 DST_SYRIA 4 1 Any 0 Hour advanced 1
54 DST_SYRIA_ SUMMER 10 1 Any 1 Hour retarded by 1
23 DST_TASMANIA 10 1 Sunday 0 Hour advanced 1
55 DST_TASMANIA_ SUMMER 3 1 Sunday 1 Hour retarded by 1
24 DST_TONGA 11 1 Sunday 0 Hour advanced 1
56 DST_TONGA_SUMMER 1 25 Sunday 1 Hour retarded by 1
25 DST_USA 4 1 Sunday 0 Hour advanced 1
57 DST_USA SUMMER 10 25 Sunday 1 Hour retarded by 1
26 DST_W_EUROPE 3 25 Sunday 1 Hour advanced 1
58 DST_W_EUROPE_SUMMER 10 25 Sunday 2 Hour retarded by 1

Reset State

The following macros are defined to help you determine what caused the last reset. If none are true, the last
reset was a hardware reset applied to the NMCLR pin.

ResetOrWakeEventWasPowerOn

ResetOrWakeEventWasStackOverflow

ResetOrWakeEventWasStackUnderflow

ResetOrWakeEventWasSoftwareReset

ResetOrWakeEventWasInterrtuptOrNMCLRDuringSleep

ResetOrWakeEventWasWDTReset

ResetOrWakeEventWasWDTWakeup

ResetOrWakeEventWasBrownOut

Semaphores

Only one high-priority and one low-priority interrupt can be serviced at a time. If you try to do something from
within an interrupt service routine which relies on an interrupt of the same or lower level being responded to,
the processor will hang because the second interrupt call will never be serviced.

Callbacks generally occur from within a low priority interrupt, and this is where you are most likely to
encounter this problem. You can’t do anything inside a callback function which relies on low priority interrupts
being responded to. This includes functions such as AwaitLMTOK(), which require interpretation of incoming
serial data from LinkMatik. It does not include most LMTCommands and FxPCommands which transmit data
only. (The exception is LMTReset, which cannot be called from within a callback.)

The solution is to use Semaphores. A semaphore is a global variable which you set inside the interrupt
service routine before promptly returning from interrupt. From inside your main code, inspect the semaphore
value frequently and respond appropriately when it is set.

In addition to your own semaphores, Toothpick OS provides certain semaphores which it uses to
communicate the current state of the Toothpick OS. You may inspect these logical values but you should not
modify them except by calling ClearSemaphores in when initializing LinkMatik. The semaphores and
macros are defined in Toothpick.h.

Semaphore / Macro Function
LinkMatikExists LinkMatik module is attached and has completed initialization.
ProcessingCommand LinkMatik is still processing a command

Page 105 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Semaphore / Macro Function
AwaitLMTComplete() | Waits until ProcessingCommand is clear
NumConnections Number of remote devices connected to LinkMatik
InFxPMode Raised while FlexiPanel user interface service is operating
FxPDeviceConnected | Raised while FlexiPanel compatible is connected
IsFxPInitialized Raised once FlexiPanel control data has been initialized and
is valid
Serial UART

The PIC18LF6722 / 6722 / 67J10's USART?2 is available for developer use. The following macros are
provided in Toothpick.h to aid its use:

Semaphore / Macro Function

InitUART Initializes UART (see note below)

UARTFrameErr UART frame error flag

UARTOverrunErr UART overrun error flag

UARTEnable Receive enable flag

UARTTxEnable Transmit enable flag

UARTRxIntFlag Receive interrupt flag

UARTTxIntFlag Transmit interrupt flag

UARTRxIntEnable Receive interrupt enable flag

UARTIntATterTx Enable interrupt on transmission complete
UARTCncl IntAfterTx | Disable interrupt on transmission complete
UARTChIn Received byte (reading this value clears UARTRxIntFlag)
UARTChOut Transmit byte (setting this value starts transmission)
UARTNotTxmitting Transmission (not) in progress flag

InitUART(BRGVal ,BRGHighVal) initializes the UART with high priority receive interrupt. The baud rate
arguments can be one of the following:

Baud rate BRGVal (#define) BRGHighVal
1220 SPBaudBrghZero1220 0
2400 SPBaudBrghZero2400 0
4800 SPBaudBrghZero4800 0
9600 SPBaudBrghOne9600 1
19200 SPBaudBrghOnel19200 1
38400 SPBaudBrghOne38400 1
57600 SPBaudBrghOne57600 1
115200 SPBaudBrghOnel115200 1

Other baud rates may be obtained by consulting Microchip Technology documentation. Examples of the use
of these macros is given in the HappyTerminal and Toothpick Slave Firmware Solutions.
SPI Synchronous Serial 1/0

The PIC18LF6722 / 6722 / 67J10’s SPI Synchronous Serial 1/O is available for developer use on the SDO,
SDA and SCL pins. The Hardware Peripheral Library provided with C18 provides SPI functions.

Timers
Timer O

Timer 0 is not used by Toothpick and is free for developer use. The Hardware Peripheral Library provided
with C18 contains libraries for operating Timer 0.

Page 106 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Timer 1

If BQS_RealTimeClock is set in the ToothpickSettings flags, timer 1 is initialized for use as a real time
clock. The developer may override this setting by clearing this flag. This will have the following effects:

e The real time clock will not advance.
¢ Pings will not be sent to FlexiPanel clients.
e The software interrupt SWI_Tick will never be generated by the real time clock.

Timer 2
Timer 2 is used to generate software interrupts and may not be used for any other purpose.
Timer 3

Timer 3 is not used by Toothpick and is free for developer use. The Hardware Peripheral Library provided
with C18 contains libraries for operating Timer 3.

Timer 4

Timer 4 is not used by Toothpick and is free for developer use. The Hardware Peripheral Library provided
with C18 contains libraries for operating Timer 4

Toothpick Public Data
The file Toothpick210.c defines shared areas of Toothpick's RAM memory known as the Toothpick Public
Data. The data in this area has a fixed meaning and may be accessed at any time to interrogate the state of

Toothpick. The shared areas of memory in Toothpick210.c should only be modified with special care.

unsigned char ToothpickSemaphores Semaphores (see Semaphores section)

unsigned char SWiflags Software interrupt flags (see Software Interrupts section)
unsigned char LMTRxStart Receive buffer start (see LinkMatik Serial Communications)
unsigned char LMTRXEnd Receive buffer end (see LinkMatik Serial Communications)
unsigned char pRemoteBTAddr Bluetooth address of last device to connect

unsigned char NumConnections Number of devices connected

unsigned char FxPChannel FlexiPanel client logical channel

Toothpick Settings

The file Toothpick210.c defines shared areas of Toothpick's memory known as the Toothpick Settings. In
this area you can customize the Toothpick Services. Definitions for this area of memory appear in
Toothpick210. c after the line:

#pragma romdata TOOTHPICK_ SETTINGS=0x00C080

You can customize the following:

¢ Select behavioral settings by setting ToothpickSettings to a bitwise-OR combination the following:

BQS_RealTimeClock Initialize real time clock (RTC) on startup
BQS_ClientTick If control is tied to RTC, update client every second

¢ Modify pLocalName to the name you want LinkMatik to use as its device name. You can also change
this value at runtime and the change will be updated next time Toothpick is reset. The length may be up
to 64 characters, but not all characters may be visible on all remote devices.

Page 107 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Set RESETT IME to the time you would like the Real Time Clock to initialize to on reset.
Set DSTDEFAULT to the default Daylight Savings Time style.

Modify pszPIN to the authentication PIN code you require. pszPIN must be a zero terminated string of
16 characters or less (not including zero terminator). Bear in mind some devices (phones) can only
enter PIN codes with digits 0-9. To disable authentication, use the LMTC_Secur ity command— do not
set the PIN to zero length. This is because a remote device may require a PIN even if Toothpick
doesn’t. The default PIN code is the Bluetooth de facto default value, 0000.

Set pBTClass to the Bluetooth Device Class which most accurately describes the product. See the
section on Bluetooth Device Classes.

Set pLMTConfig to the desired LinkMatik SET CONTROL CONFIG settings. Refer to the LinkMatik
documentation for more details. Exercise care with this as some configurations (particularly deep sleep)
can be hard to undo.

Set pPageMode to control whether LinkMatik responds to discovery and connection requests.

pPageMode string Effect

0 2000 1 Not discoverable, not connectable

1 2000 1 Discoverable, not connectable

2 2000 1 Not discoverable, connectable

3 2000 1 Discoverable, connectable

4 2000 1 If connected, not discoverable, not connectable.

If not connected, discoverable, connectable.

Refer to LinkMatik Command Reference for meaning of the 2000 1 parameters.

Trace Macros

The trace macros store data in a section of 256 bytes of RAM memory. You can then inspect the values later
using and In-Circuit Debugger.

SetupRAMTrace(pStartAddress)

SetupRAMTrace initializes the trace memory start address as pStartAddress and sets the trace pointer to

Zero.

RAMTrace (ByteVal)

RAMTrace writes ByteVal to the memory location indicated by the trace pointer and then increments the
trace pointer. If the trace pointer reaches 256, it is set to zero again and the start of the trace memory will be
re-written.

FillRAMTraceMem (Fillval)

FilIRAMTraceMenm initializes the trace memory with the value FillVal.

Utility Services

Utility services do not require interrupts to function and may be safely called from within a callback function.

Bool

variable

Page 108 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Bool is defined as unsigned char. Corresponding True (OxFF) and False (0x00) constants are also
defined.

Breakpoint(unsigned char Flashval)
The Breakpoint function provides a low-level debugging breakpoint-and-watch and error reporting service.

Breakpoint will flash the LEDs in the following manner according to Flashval:

As many green and red simultaneous flashes as the hundreds digit of FlashVal

- As many red flashes as the tens digit of FlashVval

As many green flashes as the units digit of FlashVal

or

Three green and red simultaneous flashes if FlashVal is zero

After a short delay, the sequence will repeat. Provided default pushbutton interrupt handling has not been
overridden, Breakpoint will return to the calling routine when the pushbutton is briefly pressed and released.

Example:

char ReceivedByte = 10;
Breakpoint(ReceivedByte); // report the value of ReceivedByte

CalcbhDayOfWeek(unsigned charé& DayOfWeek, unsigned char Year,
unsigned char Month, unsigned char Date)

Returns the day of week in DayOfWeek given the Year, Month and Date. The calculation is based on the
Gregorian calendar which was adopted variously between 1582 and 1919. Use of this algorithm for dates
before 1920 requires good understanding of Gregorian / Julian calendars. This utility is #defined in order to
minimize overheads; however, it remains copyright of FlexiPanel Ltd and is provided only for use with its
products unless permission is otherwise granted.

CyclesDelay3p2plus3p2times(unsigned char DelaylLen)

CyclesDelayl6plusl6times provides a delay of exactly (DelayLen+1) multiples of 16 instruction cycles.
At normal 20MHz operating speed, this is exactly (DelayLen+1) multiples of 3.2us.

Example:

CyclesDelay3p2plus3p2times(4); // (4+1)*16 = 80 cycle delay or 16us

msDelay(unsigned char ms)

msDelay provides a delay of (slightly over) 1 to 255 milliseconds, as specified by the ms argument. Works
correctly even at 8192IPs clock speed.

Example:

msDelay(10); // 10ms delay

Page 109 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Vector Map

Toothpick uses the following vector addresses. They are set up for you correctly in the linker stub file
Toothpick.o which is automatically linked in by the linker script. The source code Toothpick210.c is
provided in the software development kit.

0x000000 Toothpick initialization (calls 0x00C0O00 when done)

0x000008 Toothpick high priority interrupt handling (calls 0x00C008 when done)
0x000018 Toothpick low priority interrupt handling (calls 0x00C018 when done)
0x000030 function msDelay ()

0x000038 function Breakpoint()

0x000040 function LMTCommand)

0x000048 function LMTTransmit()

0x000050 function LMTReceive()

0x000058 function FxPCommand ()

0x000060 function GetBytes()

0x000068 function SetBytes()

0x00C000 c018itp.c RAM data initialization (calls main() when done)
0x00C008 developer high priority interrupt callback (calls developer function HighInterrupt()

immediately)
0x00C018 developer low priority interrupt callback (calls developer function Lowlnterrupt()
immediately)
0x00C030 error handler callback (calls developer function ErrorStatus() immediately)
0x00C038 LinkMatik event callback (calls developer function LMTEvent() immediately)
0x00C040 FlexiPanel; Server event callback (calls developer function FxPEvent() immediately)

Wireless Field Programming Mode

Wireless field programming (WFP) is a facility to allow you to program Toothpick via Bluetooth. A separate
Windows software application, ToothpickWFP.exe, is used for wireless field programming. The program is
also able to create Service Packs (specialized . exe files for either Windows and/or Pocket PC) which you can
distribute to allow customers and engineers to upgrade your firmware themselves.

Bluetooth communication time is negligible compared to the time it takes to write to Flash memory, so wireless
field programming is almost as fast as regular programming.

If you plan to use Microchip’s in-circuit debugger, bear in mind that the debug executive (memory locations
0x01FDCO to Ox01FFFF) will not be programmed; however, neither will these locations be erased.

Toothpick enter WFP mode if the pushbutton is held down when Toothpick initializes. You may have to hold it
down for several seconds (longer than Toothpick 1.0!). When initialization is complete, the LEDs will flash
rapidly simultaneously while waiting for the Wireless Field Programmer to connect and begin programming.
The PIN code is required and is four zeroes “0000”.

Once WFP has begun, the LEDs will flash rapidly alternately until programming is complete and/or fails.
Whichever outcome, Toothpick will then reset.

If the wireless field programming sequence is interrupted mid-process, the developer code may be corrupted.
This unlikely unless power is lost or one of the devices goes out of range. Recovery is possible by re-entering
WFP mode and reprogramming.

Page 110 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Programming with ToothpickWFP.exe

The application ToothpickWFP_exe may be used to program Toothpick and any external memory
connected to it. It takes as its input data hex files in the INHX32 Intel format, which is optionally created from
MPLAB and other development environments.

If FlexiPanel Designer is used to create a user interface which allocates external 12C memory, it will also
create a file in the INHX32 Intel format.

The hex file memory areas are mapped as follows:

Hex file memory address Destination in Toothpick

0x000000 to OxO1FFFFF Flash ROM 0x000000 to OxO01FFFFF
0x030000 to OxO3FFFFF Configuration bits — ignored.

OxOEOO0OO to OxOEO7FFF External 12C memory address STR_EXTO
OxOE1000 to OxOE17FFF External 12C memory address STR_EXT1
OxOE7000 to OxOE77FFF External 12C memory address STR_EXT7
Ox0F0000 to OxOFOO03FF EE memory 0x000 to Ox3FF

Page 111 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Development Kit Inventory

The Toothpick Development Kit contains:

1.

10.

11.

The files Main.c, Toothpick.h, HopCodes.h, Toothpick210.c, Toothpick210.11ib,
c018itp.c and Toothpick210. Ikr, which are required for Toothpick MPLAB-based applications
development.

The files Toothpick210L. 1ib and Toothpick210L. Ikr, which are required for Toothpick Lite
MPLAB-based applications development.

In the Toothpick WFP subdirectory, wireless field applications ToothpickWFP _exe, SPW.exe, and
SPP_exe.

In the Hel loWor 1dBi t subdirectory, service packs and source code files for the Hello World
Bitstream Firmware Solution.

In the Hel loWor IdFxP subdirectory, service packs and source code files for the Hello World
FlexiPanel Firmware Solution.

In the ToothpickTest subdirectory, service packs and source code files for the Toothpick
Diagnostic Firmware Solution.

In the DARC-1 subdirectory, the documentation DARC-1 . pdf, service packs and source code files for
the DARC-I Firmware Solution.

In the DARC-11 subdirectory, the documentation DARC-11 . pdT, service packs and source code files
for the DARC-II Firmware Solution.

In the Toothpick Slave subdirectory, service packs and source code files for the Toothpick Slave
Firmware Solution.

In the HTerm subdirectory, service packs and source code files for the HappyTerminal Firmware
Solution.

This documentation, Toothpick.pdf.

FlexiPanel Designer and FlexiPanel Client software should be downloaded separately from
www.FlexiPanel.com.

The MPLAB development environment and C18 compiler must be bought separately from Microchip
Technology Inc (www.microchip.com) or one of its distributors.

Page 112 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending www.FlexiPanel.com

Revision History

Version Date Major revisions

4.0.0 10-Jan-07 Initial release

4.01 22-Jan-07 Added Toothpick Lite support

4.0.2 29-Jan-07 Fixed locations of math libraries
4.0.3 Corrected DARC-I sample intervals

Page 113 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

Glossary and Notation

Hex Notation

Throughout this document, numbers with an ‘0x’
prefix should be assumed to be in hex. For
example, OxFF is completely equivalent to decimal
255.

In some partners’ documentation, a ‘$’ prefix is
used in place of an ‘0x’ prefix. ‘$FF’ is equivalent
to ‘OxFF’ and decimal 255.

In some partners’ documentation, a ‘H’ suffix is
used in place of an ‘Ox’ prefix. ‘FFH’ is equivalent
to ‘OxFF’ and decimal 255.

Data Types

Data types are C standard data types; no floating
point is used. C standard notation and calling
conventions are assumed. Integers are explicitly
defined as:

bool — unsigned char, zero for false, otherwise true
byte — 8 bit unsigned integer

int16 — 16 bit signed integer

int32 — 32 bit signed integer

signed char — 8 bit signed integer

uintl6 — 16 bit unsigned integer

uint32 — 32 bit unsigned integer

unsigned char — 8 bit unsigned integer

word — 16 bit unsigned integer

Glossary

> symbol — Navigation drilldown to a particular
item in a piece of software. A list of phrases
separated by > symbols means: go to the program,
menu or tab indicated by the first phrase, look for
the second phrase and select it, look for the third
phrase and select it, etc, until you find the item at
the end of the list.

Big-Endian — see Endian.
Buffer — A linear region of memory designed for

storing data entering from or departing to a
communications channel.

Circular buffer — A ffirst-in-first-out’ buffer which
wraps around. It has a start pointer indicating
when the next byte is to be dispatched (i.e. read or
transmitted) and an end pointer indicating the last
piece of data to be dispatched. The start pointer
advances when its data is dispatched; the end
pointer advances when new data arrives. When
either pointer reaches the end of the buffer it starts
at the beginning again. If the end pointer catches
up with the start pointer, the buffer is full and a
buffer overrun occurs.

<CR> — The ASCII carriage return character 0x0D.

CTS — ‘Clear to Send’ flow control input to a DTE
serial device to tell it that it is OK to transmit on its
TxD line. In FlexiPanel 3.0 documentation, all
devices are DTE devices and CTS on one device
is connected to RTS on the corresponding device.

DTE - ‘Data Terminal Emulator’. A serial device
whose TxD line is a data output, RxD line is a data
input, etc. In FlexiPanel 3.0 documentation, all
devices are treated as DTE devices. A PC’s serial
portis DTE. The opposite is DCE.

DCE - ‘Data Circuit Equipment’. A serial device
whose TxD line is a data input, RxD line is a data
output, etc. In FlexiPanel 3.0 documentation, all
devices are treated as DTE devices, not DCE
devices.

FlexiPanel client — Hardware or software that
creates a control panel when requested to by a
FlexiPanel server.

Endian — Refers to the order in which multibyte
integers are stored and/or transmitted. In Little-
Endian format, bytes are in increasing order of
significance, least significant byte first. In Big-
Endian format, bytes are in increasing order of
significance, most significant byte first. In general,
Flexipanel Ltd uses little-endian format, but there
are exceptions.

FlexiPanel server — Hardware or software that
requests a control panel to be created on a
FlexiPanel client.

IC — Integrated Circuit.

KIPS — thousand instruction cycles per second.

<LF> — The ASCII line feed character 0x0A.

Little-Endian — see Endian.

Page 114 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

LSB - least significant bit or byte, depending on
context.

MIPS — million instruction cycles per second.

MSB — most significant bit or byte, depending on
context.

OS — Operating System.

Overrun — A circular buffer overruns if an attempt
is made to add more data to it when it is full (see
definition of circular buffer).

PWM - Pulse Width Modulation.

RTS — ‘Request to Send’ flow control output from a
DTE serial device to indicate that it is OK to send it
data on its RxD line. In FlexiPanel 3.0
documentation, all devices are DTE devices and
RTS on one device is connected to CTS on the
corresponding device.

RxD — ‘Receive Data’ serial input to a DTE serial
device. In FlexiPanel 3.0 documentation, all
devices are DTE devices and RxD on one device
is connected to TxD on the corresponding device.

RxD — ‘Transmit Data’ serial output from a DTE
serial device. In FlexiPanel 3.0 documentation, all
devices are DTE devices and TxD on one device
is connected to RxD on the corresponding device.

Underrun — A circular buffer underruns if an
attempt is made to dispatch data from it when it is
empty.

Unicode — Two-byte integer array representing text
characters. ASCIl characters keep the same
values in the Unicode character set.

User — The person using the finished product (as
opposed to the Developer).

Zero Terminator — A zero-valued character used to
indicate the end of a string of characters.

Page 115 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd

Patents apply and/or pending

www.FlexiPanel.com

Legal Notices

If any of this is not clear, contact FlexiPanel Ltd for
clarification.

General

FlexiPanel technology should not be used in life
critical devices without the permission FlexiPanel
Ltd.

FlexiPanel Ltd makes every effort to ensure, but
cannot warrant, that its products and
documentation are without errors and omissions.
However FlexiPanel Ltd does not accept liability
for consequent loss or injury as a result of using its
products or interpreting its documentation.
FlexiPanel Ltd will not be responsible for any third
party patent infringements arising from the use of
its products.

FlexiPanel Ltd reserves the right to make changes
to its technology and documentation in order to
improve reliability, function or design.

Software Libraries

FlexiPanel Ltd provides software such as the
Toothpick Services exclusively for use with
products made by FlexiPanel Ltd. It is not
permitted to use the libraries except with products
made by FlexiPanel Ltd. It is not permitted to
reverse engineer the security features designed to

ensure that the library only works with products
made by FlexiPanel Ltd.

Bluetooth Trademark

The Bluetooth trademarks are owned by Bluetooth
SIG, Inc., U.S.A.

FlexiPanel Protocol

The FlexiPanel protocol and the products which
use it are protected by pending patents and
copyright law.

The FlexiPanel protocol allows servers to create
user interfaces on remote clients.

Client software and products are freely
distributable as far as we are concerned and you
can do with them what you like. You can also
freely produce your own client software and
products which use the FlexiPanel protocol.

We make a living from licensing the FlexiPanel
servers and providers of FlexiPanel server
products must pay us an agreed license fee. |If
you buy FlexiPanel hardware products from
FlexiPanel Ltd, this license is implicit. You may,
under license, also make your own hardware or
software FlexiPanel server products — contact us
for details.

Page 116 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2

© FlexiPanel Ltd

Patents apply and/or pending www.FlexiPanel.com

Contact Details

Ordering Contact Details
Toothpick is manufactured and distributed by

R F Solutions Ltd

Unit 21, Cliffe Industrial Estate,

Lewes, E. Sussex BN8 6JL, United Kingdom

email : sales@rfsolutions.co.uk
http://www.rfsolutions.co.uk

Tel: +44 (0)1273 898 000, Fax: +44 (0)1273 480 661

Technical Support
Toothpick is owned and designed by FlexiPanel Ltd:

FlexiPanel Ltd

2 Marshall St, 3" Floor

London W1F 9BB, United Kingdom
www.flexipanel.com

FlexiPanel™ email: support@flexipanel.com

Page 117 15-Apr-07 Toothpick 2.1/r2.1.0 DS484-2 © FlexiPanel Ltd Patents apply and/or pending

www.FlexiPanel.com

